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Abstract: This paper presents a novel approach for texture classification and relevance with generalizing the well-known local binary patterns 

(LBP). 

INTRODUCTION 

The Local Binary Pattern (LBP) [1] is an operator for image 

description that is based on the signs of differences of 

neighboring pixels. It is fast to compute and invariant to 

monotonic gray-scale changes of the image. Despite being 

simple, it is very descriptive, which is attested by the wide 

variety of different tasks it has been successfully applied to. 

The LBP histogram has proven to be a widely applicable 

image feature for, e.g. texture classification, face analysis, 

video background subtraction, etc. [2]. A possible drawback 

of the LBP operator is that the thresholding operation in 

comparing the neighboring pixels could make it sensitive to 

noise. Practical experiments with images of good quality 

have not supported this argument but under difficult 

conditions or with images taken with noisy special cameras, 

noise might present a problem to the traditional LBP 

operator. In this paper we introduce soft histograms for LBP 

which we show to make the operator more robust to noise. 

MULTI-BLOCK LOCAL BINARY PATTERNS 

The MB-LBP (Multi-Block Local Binary Pattern) texture 

descriptor is an extension of the original LBP as proposed 

by Zhang et al. [12]. MB-LBP are more robust than the 

original LBP descriptor as it can encode microstructures as 

well as macrostructures. For certain applications such as 

face recognition, experimental results indicate that MB-LBP 

out-perform other LBP algorithms [13]. The calculation of 

an MB-LBP is similar to a standard LBP except that in a 

MB-LBP t0 to t7 (Figure 1) are the average grey values of 

the pixels in each corresponding region. These regions are 

compared to the averaged central region. Each averaged 

region is of equal size but does not necessarily have to be 

square. 

 

 
Figure. 1. An example of a 9x9 MB-LBP 

FEATURE EXTRACTION WITH LOCAL BINARY 

PATTERNS 

The original LBP operator, introduced by Ojala et al. [1], is 

a powerful way of texture description. The operator labels 

the pixels of an image by thresholding the 3×3-

neighbourhood of each pixel with the center value and 

considering the result as a binary number. Then the 

histogram of the labels can be used as a texture descriptor. 

The basic LBP operator is illustrated in Fig. 2 (a).

 

Figure. 2. The basic LBP operator and three examples of extended LBPs. (a) The basic LBP operator. (b) The circular (8,1) neighborhood. (c) The circular (8,2) 

neighborhood. (d) The circular (8,3) neighborhood. 

The most prominent limitation of the LBP operator is its 

small spatial support area. Features calculated in a local 3×3 

neighborhood cannot capture large scale structure that may 

be the dominant features of some textures. Later the 

operator was extended to use neighborhoods of different 

size [1]. Using circular neighborhoods and bilinearly 

interpolating the pixel values allow any radius and number 

of pixels in the neighborhood. Examples of these kinds of 

extended LBP are shown in Fig. 2(b), (c), (d). 

INTEGRAL HISTOGRAMS 

A common technique used to detect faces in images is to 

slide a window with predefined size which is resized until 

certain value. At each step of this sliding process, the 
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features are extracted from the image region inside the 

window and they are used as input to a classifier previously 

trained for that type of patterns. The problem with the 

sliding window technique comes from the time needed to 

compute the features at each step. The Integral Image 

representation [4] overcomes the processing time problem 

by precomputing all the possible summations of pixel gray 

values before the passage of the sliding window. At each 

step, only few accesses to a precomputed matrix are needed 

and the summation is done in a constant time for any scale 

and position. However, there are some criticisms about the 

usage of differences between summations of gray values in 

adjacent image regions. Balas and Sinha [5] argue that a 

colection of edge fragments is a simple way of image 

representation, but the local processing performed by the 

edge fragment extraction restricts the generalization strength 

of the features in adapting to small changes in illumination.  

 

Besides, the edge maps implicitly ignore the majority of 

image information modified by geometrical transformations 

in the image. Those problems lead to the search for new 

image representations that could tackle some of them. Wang 

et al. [6] argues that the best compromise between 

distributional structure and the retaining of good image 

properties for class estimation are histograms. Within the 

context of real time face detection, Integral Histograms [7] 

is a new technique that is receiving great attention. 

NEAREST NEIGHBORS 

The nearest neighbor algorithms are simple classifiers that 

select the training samples with the closest distance to the 

query sample. These classifiers will compute the distance 

from the query sample to every training sample and select 

the best neighbor or neighbors with the shortest distance. 

The k-Nearest Neighbor (k-NN) is a popular implementation 

where k number of best neighbors is selected and the 

winning class will be decided based on the best number of 

votes among the k neighbors [14]. The nearest neighbor is 

simple to be implemented as it does not require a training 

process. It is useful especially when there is a small dataset 

available which is not effectively trained using other 

machine learning methods that goes to the training process. 

However, the major drawback of the nearest neighbor 

algorithms is that the speed of computing distance will 

increase according to the number of training samples 

available. 

CONTINUOUS WAVELET TRANSFORMATION 

The WT is designed to address the problem of nonstationary 

signals. It involves representing a time function in terms of 

simple, fixed building blocks, termed wavelets. These 

building blocks are actually a family of functions which are 

derived from a single generating function called the mother 

wavelet by translation and dilation operations. Dilation, also 

known as scaling, compresses or stretches the mother 

wavelet and translation shifts it along the time axis 

[8,9,10,11]. 

 

The WT can be categorized into continuous and discrete. 

Continuous wavelet transform (CWT) is defined by 

 
Where x(t) represents the analyzed signal, a and b represent 

the scaling factor (dilatation/compression coefficient) and 

translation along the time axis (shifting coefficient), 

respectively, and the superscript asterisk denotes the 

complex conjugation. Ψa,b(
.) is obtained by scaling the 

wavelet at time b and scale a: 

 
Where ψ(t) represents the wavelet [9,10]. 

 

Continuous, in the context of the WT, implies that the 

scaling and translation parameters a and b change 

continuously. However, calculating wavelet coefficients for 

every possible scale can represent a considerable effort and 

result in a vast amount of data. 

GREY LEVEL CO-OCCURRENCE MATRICES 

GLCM is an old feature extraction for texture classification 

that was proposed by Haralick et al. back in 1973 [16]. It 

has been widely used on many texture classification 

applications and remained to be an important feature 

extraction method in the domain of texture classification. It 

is a statistical method that computes the relationship 

between pixel pairs in the image. In the conventional 

method, textural features will be calculated from the 

generated GLCMs, e.g. contrast, correlation, energy, 

entropy and homogeneity [17]. However in recent years, the 

GLCM is often combined with other methods and is rarely 

used individually [15, 18, 19, 20]. Other than the 

conventional implementation, there are a few other 

implementations of the GLCM, e.g. by introducing a 

second-order statistical method on top of the textural 

features in the original implementation [20], one-

dimensional GLCM [21] and using the raw GLCM itself 

instead of the first-order statistics [22]. The GLCM can also 

be applied on different color space for color cooccurrence 

matrix [23]. 

GREY LEVEL CO-OCCURRENCE MATRICES 

Introduced by Haralick [24], GLCM is one of the earliest 

texture analysers which is still of interest in many studies. 

Since the beginning of the 70‟s many researchers have 

studied GLCM theory and have practically implemented it 

in a wide range of texture analysis problems. GLCM is a 

model that can explicitly represent the higher order statistics 

of an image, just like ordinary histograms which represent 

the first order statistics of images. 

Statistical Approaches: 

Statistical texture analysis methods deal with the distribution 

of grey levels (or colours) in a texture. The first order 

statistics and pixel-wise analysis are not able to efficiently 

define or model a texture. Therefore, statistical texture 

analysis methods usually employ higher order statistics or 

neighbourhood (local) properties of textures. The most 
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commonly used statistical texture analysis methods are co-

occurrence matrices, autocorrelation function, texture unit 

and spectrum, and grey level run-length [25, 26, 27]. 

Grey level run-length or primitive-length: 

In this method, the primitive set is defined as the maximum 

set of continuous pixels of the same grey level, located in a 

line. The length of primitives (run-lengths) in different 

directions can then be used as the texture descriptors. A 

longer run-length implies a coarser texture and vice versa, 

also a more uniformly distributed run-length implies a more 

random texture and vice versa. Statistics of the primitives 

can be computed as the texture features. 

Spatial domain filtering:  

A texture can be considered as a mixture of patterns, 

therefore characteristics of „edges‟ and „lines‟ are key 

elements to describe any texture. Even a plain or smooth 

texture can be considered as a texture without any edge. The 

early attempts to utilize spatial domain filtering as texture 

descriptor were emphasised on gradient (i.e. line and edge 

detector) filters such as Robert and Sobel operators [28, 26]. 

CONCLUSIONS 

The goal of this study was to perform a study of several 

Local Binary Pattern approaches because this concept has 

represented a milestone in texture analysis. The Local 

Binary Pattern descriptors have been powerful tools for 

feature encoding. 
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