

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 4, April 2015

An Efficient Security Scheme Authentication and Encryption

Shraddha Bagwe, Dr.J.W.Bakal

M.E Student, Department of Information Technology, Terna College, University of Mumbai, Mumbai, India

Chairman, Board of Studies, Information Technology, University of Mumbai, Mumbai, India

ABSTRACT: Smart grid communication facilitate intelligent and distributed electric power transmission systems, but also introduces many security problems. In this paper the concept of dynamic secret is applied to design dynamic secret based authentication and encryption scheme for smart grid wireless communication. Between two parties of communication, the previous packets are coded as retransmission sequence, where retransmitted packet is marked as "1" and the other is marked as "0." During the communication, the retransmission sequence is generated at both sides to update the dynamic encryption key. Any missing or misjudging in retransmission sequence would prevent the adversary from achieving the keys. In addition with this we introduce a new protocol, Integrated Authentication and Confidentiality (IAC), to provide efficient secure AMI communications in smart grid. With the help of IAC, an AMI(Advanced Metering Infrastructure) system can provide trust services, data privacy, and integrity by mutual authentications whenever a new smart meter initiates and joins the smart grid AMI network.

KEYWORDS - Authentication, Confidentiality, Dynamic secret based encryption, Retransmission, Security, Smart Grid.

I. INTRODUCTION

RECENTLY, smart grid (SG) is the buzz word, which has attracted attentions from engineers and researchers in both electric power and communication sectors. The concept of SG has appeared in recent literature in different flavors. Some referred to it as intelligent grid whereas some called it the grid of the future. The objective of the SG concept remains more or less the same, namely to provide end users or consumers with power in a more stable and reliable manner. SG incorporates a two-way communication between the provider and consumers of electric power. The two-way communication indicates the ability of SG to enable the end users to express their power requirement demands to the utility provider. The electrical power industry is in the process of integrating its distribution system with communication networks and control techniques to form a bidirectional power and information flow infrastructure, commonly called a smart grid.[1] The smart grid (SG) is considered as a desirable infrastructure for energy efficient consumption and transmission, where the built-in information networks support two-way energy and information flow, facilitate significant penetration of renewable energy sources into the grid, and empower consumer with tools for optimized energy consumption.[2]

Various types of attacks targeting industrial control systems (ICSs) and information technology systems (ITSs) as well as different performance requirements of these traditional information systems determine a specific priority order for the security services implemented for smart grid wireless communication systems. The advanced wireless metering infrastructure (AWMI) refers to the systems that collect, measure, and analyse energy usage from networks that are connected to next-generation electricity meters, or so-called smart meters.

(An ISO 3297: 2007 Certified Organization)

<complex-block>

Fig.1. Wireless Network for Electrical Distribution of Power Grid[6]

II.RELATED WORK

In the century since residential electrical service started to become a ubiquitous feature of life, the details of how households consume electricity have largely remained inside the home. Electromechanical meters have kept track of total electricity usage. These meters did not record or reveal who used electricity, when, or where, nor did they allow energy consumption to be noted in real-time. All of this is changing as digital "smart meters" become part of energy infrastructure. Smart meters, as components of the advanced metering infrastructure (AMI), serve a broader effort to construct a "Smart Grid" by integrating information technology into electricity generation, transmission, and distribution. According to the Federal Energy Regulatory Commission (FERC), as of September 2009, there were approximately eight million advanced meters installed nationwide; FERC expects that number to reach 80 to 141 million by 2019.5 In California, the three major investor-owned utilities (IOUs) are in the midst of deploying smart meters for electricity; they plan to deploy approximately 12 million electric meters by the end of 2012.[7]

Concurrent with metering is the development of home area networks (HAN) composed of devices that communicate with one another and can communicate data to utilities (or other energy service providers) and can receive and respond to signals sent by these remote entities.

III.METHODOLOGY

One possible solution for security issues is to apply standard security techniques which provides authentication, encryption-decryption, data integrity. For example: Public key encryption, symmetric key encryption etc. There are certain limitation of these standard techniques which are solved in *Dynamic Secret Based Encryption Scheme*. The Limitations are as follows:[2]

Low-cost: The cost is the first priority of the users and suppliers. In order to be cost effective, the computational power, memory and storage of the smart devices are limited. It leads to severe restriction on modern security techniques, such as: complicated cryptographic algorithms may exhaust all computation and storage resource of units; third party applications, such as private key generator, may visibly increase the cost of whole wireless system.

Low-bandwidth: The communication channels in lower distribution and consumption grids are designed to transmit short message, and require only low bandwidth. Integrity protection mechanisms such as cipher-based message authentication code (CMAC) add typically 64 to 96 bits to every message.

Proposed Scheme: To overcome limitation and meet AMI security requirements we use Dynamic Secret based Authentication and Encryption. These include three phases:

Phase I: Generate DSE Key for SG Wireless Communication[2]

Dynamic secret was developed for securing wireless communication. The basic idea of dynamic secret is that the legitimate users dynamically generate a shared symmetric secret key utilizing the inevitable transmission errors and other random factors in wireless communication. In the fig we firstly introduce the basic algorithms of dynamic secret; and then present the DSE scheme.

A. Dynamic Secret

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 4, April 2015

The sender and receiver monitor the error retransmission in link layer to synchronously select a group of frames. These frames are hashed into dynamic secret to encrypt the data. This part is a brief introduction of dynamic secret.

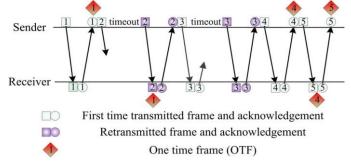


Fig.2. SW protocol and OTF identification

1)Retransmission Analysis/OTF Set Generation:

On the link layer's communication, error retransmission happens unavoidable and randomly at both side of the sender and the receiver. According to Stop-and-Wait (SW) protocol, the sender transmits a frame and waits for the corresponding acknowledgement before sending a new frame. If a frame is only transmitted once and its acknowledgement frame is received in time, this frame is named as one time frame (OTF). As shown in Fig.2, the packet 1 is confirmed as an OTF on the sender until the acknowledgement of packet 1 is received; it is confirmed on the receiver until the second packet is received. It will be added into OTF set . Both the transmitted frame (packet 2) and acknowledgement (packet 3) are retransmitted, thus they are not added into OTF set.

2)Dynamic Secret Generation:

Once the number of OTF set reaches the threshold, the sender and receiver agree on a uniformly random choice of universal-2 hash functions to compress into the dynamic secret DS(k). Then, the is reset to empty. It is proved that DS(k) will fully retain the adversary's information loss.

3)Encryption/Decryption:

When a new dynamic secret is generated, it will be applied to update the encryption key at both sides of communication. This symmetric encryption key is used to encrypt the data at sender and decrypt the cipher at receiver. To reduce the computation consumption, the XOR function is used for encryption and decryption.

B)DSE Scheme for Smart Grid Wireless Communication

Dynamic secret-based encryption (DSE) scheme is designed to secure the wireless communication between the smart devices and control center. The framework of DSE scheme is shown in Fig. 3, consisting of retransmission sequence generation (RSG),DS generation (DSG), and encrypt/decrypt.

1)DSE algorithm:

RSG: This module is applied to monitor the link layer error retransmission. The communication packets which have been retransmitted are marked as "1" and the non-retransmitted packets are marked as "0." The pervious packets are coded as0/1 sequence, named as retransmission sequence (RS).In DSE, RS is applied to replace the OTF set for dynamic secret generation due to the limitation of computation capability and storage resources.

DSG: Once reaches the threshold L_RS (length of RS), it would be compressed to a DS in DSG module. Considering the limitation on computation power, the hash functions f_{hash} are recommended in DSG module.

 $DS(k) = f_{hash}(L_RS)$ -----(1)

Encrypt/Decrypt: The new dynamic secret DS(k) is applied to update the dynamic encryption key (DEK) by DEK(k)=DS(k) EX-OR DEK(k-1)------(2)

DEK(k) is generated at both sides of communication synchronously. The sender applies it to encrypt the DATA and the receiver applies it to decrypt the CIPHER. XOR function, as one of the most light-weight and easy-implementation algorithm, is applied to update the DEK and encrypt/decrypt the data on both sides. If DEK is shorter than the data, DEK(k) is replicated and padded circularly to generate $DEK^*(k)$ whose length is equal to the raw data or cipher text.

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 4, April 2015

Phase II: Initialization Process and Authentication[1]

Fig.4. illustrates the initialization process for each new smart meter as a supplicant. Before joining the AMI network, each new smart meter must be verified by the remote authentication server located at the local management office as a legal device and terminal customer. The neighbouring authenticated smart meters can play as authenticators in the initialization process and relay the authentication process messages between the supplicant and the authentication server. Both the supplicant and the authentication server have an identical key K, which was pre-installed, not concealed to anyone else including the authenticator. Both the mutual authentication identities and the consequent data encryption/decryption between supplicant and authentication server are based on k. If the supplicant's identity is authenticated as a valid device, the corresponding credential of the supplicant is established between the authentication server and the supplicant. Then, the authentication server will generate an initial vector (IV) and a key k. The IV and k will be encrypted by K, denoted as EK(IV||k) as shown in Fig.4. So the supplicant can decrypt and get its IV and k. Meanwhile, the authentication server sends k to the authenticator encrypted with their own K¢ denoted as $EK\phi(IV||k)$ since the authenticator was authenticated already with $K\phi$. So the authenticator knows k. With its k, the supplicant and authenticator can individually generate kn-1, *n*, which is the symmetric key for message authentication code generation and validation between one-hop neighbouring nodes n and n-1 on the data forwarding path. As such, a four-way handshake procedure is established to fulfil another mutual authentication between the supplicant and authenticator. After successful mutual authentication, the key kn-1, n at both the supplicant and authenticator sides is validated and made ready for subsequent message authentication code generation and validation purposes. After the initialization process, the proposed IAC protocol also includes a hop-by-hop data aggregation and forwarding scheme that transmits meter reading and control messages between smart meters and a feeder (collecting node).

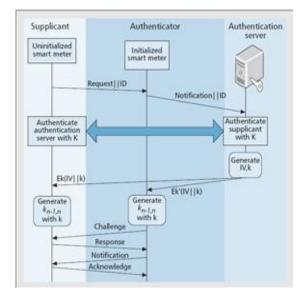


Fig.4. Initialization process and authentication

Phase III: Data Aggregation Forwarding and Control Message Distribution Process Smart Meter collects/receives data/control messages and forwards to control center using encryption/decryption. Since it use DSE each time new key is generated and secured communication takes place.

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 4, April 2015

IV.RESULTS

1)Comparisons between Password Based Authentication and Authentication and Encryption:

By generating these comparisons we conclude that:

1)Brute Force: Using Password Based Authentication the adversary can brute force the password which means that a program literally reads through a provided dictionary of terms, trying each word until the correct combination of characters breaks the password. Typically, protecting yourself from these attacks requires you to create complex passwords that include numbers, letters, and special symbols, which can be hard to remember.

2)Storage: When you use password authentication, you must store passwords and usernames in a database to authenticate users. If you don't have strong server security, someone can break into the database and read the passwords.

From the Fig.4 the authentication provided by the current technique remains stable as it uses key to authenticate which is generated new for each transaction. But for Password Based authentication sometimes the password can be brute force or the database were the password is stored can be attacked by the adversary. So in each trial the percent decreases.

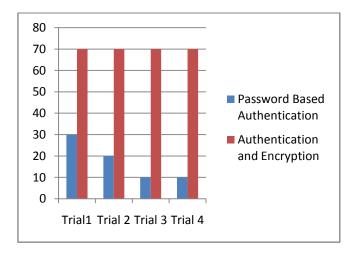


Fig.5.Comparison Between Password Based Authentication and Authentication and Encryption

IV. CONCLUSION

An Efficient Security scheme: Authentication and Encryption for Wireless Smart Grid Communication is designed to secure the wireless communication of SG. To reduce its complexity, the retransmission sequence is proposed to update dynamic encryption key, replacing the OTF set; and MD2 is selected as the hash algorithm. A demo system is developed to investigate the performance of DSE scheme. The newly added node is authenticated by the neighbouring authenticated node. It provides mutual authentication between a remote server located in the local management office and a neighbouring smart meter as the authenticator to obtain proper cryptography keys for consequent secure data communications. Therefore, readings from smart meters and management messages from central SCADA and/or local management offices can employ encryption and message authentication mechanisms tailored for the security requirements and system constraints. The numerous experiments reveal that: 1) the DSE scheme can protect the users against eavesdropping by updating the dynamic encryption key with retransmission sequence in communication, even the attackers know the details of DSE scheme and obtain the encryption key at some time; 2) it is a light-weight encryption method with only simple operations, such as MD2 and XOR; 3) it is self-contained, that is, it is dynamically generated during the normal communication without additional traffic and control command; 4) it has good compatibility, which could be integrated with many wireless techniques and applications, such as ZigBee.

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 4, April 2015

REFERENCES

[1] Ye Yan Hu, R.Q.; Das, S.K.; Sharif, H.; Yi Qian, "An Efficient Security Protocol for Advanced Metering Infrastructure in Smart Grid", Network IEEE,vol.27,2013.

[2]Ting Liu, *Member, IEEE*, YangLiu, YashanMao, Yao Sun, XiaohongGuan, *Fellow, IEEE*, Weibo Gong, *Fellow, IEEE*, and Sheng XiaoA, "Dynamic Secret-Based Encryption Scheme for Smart Grid Wireless Communication", IEEE 2013.

[3]P. McDaniel and S. McLaughlin, "Security and privacy challenges in the smart grid," IEEE Security Privacy, vol. 7, pp. 75–77, 2009.

[4]M. M. Fouda, Z. M. Fadlullah, N. Kato, L. Rongxing, and S. Xuemin, "A lightweight message authentication scheme for smart grid communications," *IEEE Trans. Smart Grid*, vol. 2, pp. 675–685, 2011.

[5]A. R. Metke and R. L. Ekl, "Security technology for smart grid networks," IEEE Trans. Smart Grid, vol. 1, pp. 99-107, 2010.

[6] António Grilo1, Helena Sarmento1, Mário Nunes1, José Gonçalves2, Paulo Pereira1," A Wireless Sensors Suite for Smart Grid Applications", ... Augusto Casaca1.pdf.

[7] Berkeley, Deirdre K. Mulligan, Longhao Wang, Aaron J. Burstein, "PRIVACY IN THE SMART GRID: AN INFORMATION FLOW ANALYSIS" Prepared for CIEE By: University of California, March, 2011.

[8]"Smart Grid Cyber Security And Potential Threats, Vulnerabilities And Risk", University of California, May 2012.

[9] "The smart grid: An introduction," in DOE's Office of Electricity Delivery and Energy Reliability 2008.

[10] Y. Ye, Q. Yi, and H. Sharif, "A secure data aggregation and dispatch scheme for home area networks in smart grid," in *Proc. 2011 IEEE Global Telecommun. Conf.*, pp. 1–6.

[11]Cisco,, "Security for the smart grid," 2009, White Paper[Online].Available:http://www.cisco.com /web/strategy /docs/energy/white_paper _c11_539161.pdf.

[12] W. Xudong and Y. Ping, "Security framework for wireless communications in smart distribution grid," *IEEE Trans. Smart Grid*, vol. 2, pp. 809–818, 2011.

BIOGRAPHY

Shraddha Bagwe is a M.E student in the department of Information Technology at Terna College, Mumbai University and Completed her B.E from Mumbai University as well. She is currently a lecturer at Saraswati Education Society Group Of Institute Faculty Of Engineering. Her interest area is Security.

Dr.J.W.Bakal is a Chairman, Board of Studies, Information Technology, University Of Mumbai , Mumbai. He is also a Governing Council Member, IETE, New Delhi and IMM. He was also a Past Chairman, IETE Mumbai Center, Member, Board of Studies, MCA, University Of Mumbai, Mumbai. He is currently Principal at Jondhale College.