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 ABSTRACT 

 

 

In computational chemistry or crystallography, we always meet the 

problem that requires distributing N particles in one square cell with the 

minimal neighbour distance. Sometimes this problem is with special or 

complex constraints. This short article will build a molecular optimization 

model for the problem, and then will show one example of the application 

of this model. 
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INTRODUCTION 

We consider the problem that requires distributing N (≥ 1) particles in one three- dimensional (3D) 

2a × 2b × 2c box/cell/unit with the minimal neighborhood distance. Let us define that dij is the direct-

distance variable between particle i (1 ≤ i ≤ N) and particle j (1 ≤ i ≤ N, j ≠ i).  

Direct-distance means particles i and j have a direct interaction relationship, for example, in 

computational chemistry, VanderWaals (vdW) contact [1,2], (or) solvent accessible surface area (ASA) 

contact (en.wikipedia.org/wiki/Accessible surface area), etc to each other. Denote (xi1, xi2, xi3) and 

(xj1, xj2, xj3) the coordinates of particles i and j, respectively. Then, for the convenience of practical 

computations [3,4], we can build an optimization model for the above problem. 
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Subject to       −a ≤ xi1, xj1 ≤ a,−b ≤ xi2, xj2 ≤ b,−c ≤ xi3, xj3 ≤ c, i, j = 1, . . . ,N.    (3)    

        

This might be a problem of Voronoi diagram (en.wikipedia.org/wiki/Voronoi diagram) and the 

unit is called Voronoi cell. In computational chemistry, some crystals own special structures 

of the Voronoi cells; in such a case, we may add some additional constraints to Equation 

(3).  

Clearly, the well-known Lennard-Jones Clusters problem [2] is one case of the above 

optimization problem Equations (1–3). 
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Example 

We give a 2D Voronoi cells example Figure 1. We distribute 8 particles in one 2D square with the 

minimal neighborhood distance among them, with a constraint that each particle is only in one of 

the 8 Voronoi cells of the square. Figure 1(a) shows the initial solution that is given to the 

problem. Figure 1(b) and Figure 1(c) show the optimal (octagon) distribution of the 8 particles 

inner the square and onto the boundary of the square, respectively, after we solve the 

optimization problem Equations. (1-3) if in Equation. (3) “≤” is “≤” Figure 1(b) or “<” Figure 1(c). 

Figure 1: The optimization model to distribute 8 particles into 8 Voronoi cells of a square unit: (a) initial distribution given, (b) 

optimal (octagon) distribution inner the square, and(c) Optimal (octagon) distribution onto the boundary of the square. The green 

dashed line denotes there is a direct relationship between the two particles they link (e.g. the two atoms have the vdW interactions). 
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