
Volume 3, No. 8, August 2012

Journal of Global Research in Computer Science

REVIEW ARTICAL

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 56

ANALYSIS OF LOSSLESS REVERSIBLE TRANSFORMATION ALGORITHMS

TO ENHANCE DATA COMPRESSION

P. Jeyanthi
1*

, V. Anuratha
2

*1Research Scholar in Computer Science, Sree Saraswathi Thyagaraja College, Pollachi -642 107, Tamilnadu, India

jeyanthi_mahen@yahoo.com1
2Asst. Prof, PG Department of Computer Applications, Sree Saraswathi Thyagaraja College, Pollachi -642 107, Tamilnadu, India

mailanuvinu@yahoo.co.in2

Abstract – In this paper we analyze and present the benefits offered in the lossless compression by applying a choice of preprocessing methods

that exploits the advantage of redundancy of the source file. Textual data holds a number of properties that can be taken into account in order to
improve compression. Pre-processing cope up with these properties by applying a number of transformations that make the redundancy “more
visible” to the compressor. Many pre-processing algorithms come into being for text files which complement each other and are performed prior
to actual compression. Here our focus is on the Length-Index Preserving Transform (LIPT), its derivatives ILPT, NIT & LIT and StarNT
Transformation algorithm. The algorithms are briefly presented before calling attention to their analysis.

Keywords - LIPT, ILPT, NIT, LIT and StarNT

INTRODUCTION

The amplified spread of computing has led to a massive

outbreak in the volume of data to be stored on hard disks

and sent over the Internet. This escalation has led to a

crucial need for "Data compression" which is the process of

encoding information using fewer bits than the original

representation would use. It is the ability of reducing the

amount of storage or Internet bandwidth required to handle

this data. The most vital objective of any compression

algorithm is the compression efficiency. Intuitively, the

behavior of a compression algorithm would depend on the

data and their internal structure. The more redundancy the
source data has, the more effective a compression algorithm

may be.

The vital feature of merit for data compression is the

"compression ratio", which is the ratio of the size of a

compressed file to the original uncompressed file. For

example, suppose a data file takes up 30 kilobytes (KB).

Using data compression techniques, the file could be

reduced in size to, say, 15 KB that makes it easier to store

on disk and helps faster transmission over an Internet

connection. Thus the data compression software reduces the

size of the data file in this case by a factor of two, and hence
the "compression ratio" of 2:1 is attained. Thus Data

compression is the process of encoding the data in such a

way that, fewer bits are needed to represent the data than the

original data and thus reducing the size of the data. This

process is carried out by means of specific encoding

schemes.

The text compression techniques have captured the attention

more in the recent past as there has been a substantial

expansion in the usage of internet, digital storage

information system, transmission of text files, and
embedded system usage.

Though there are bountiful methods existing, however, none

of these methods has been able to reach the theoretical best-

case compression ratio consistently, which suggests that

better algorithms may be possible. One approach to attain

better compression ratios is to develop different
compression algorithms.

A number of sophisticated algorithms have been proposed

for lossless text compression of which Burrows Wheeler

Transform (BWT) [4] and Prediction by Partial Matching

[12] outperform the classical algorithms like Huffman,

Arithmetic and LZ families [22] of Gzip and Unix –

compress [20]. PPM achieves better compression than

almost all existing compression algorithms but the main

problem is that it is intolerably slow and also consumes

large amount of memory to store context information. BWT
sorts lexicographically the cyclic rotations of a block of data

generating a list of every character and its arbitrarily long

forward context. It utilizes Move-To-Front (MTF) [1] and

an entropy coder as the backend compressor. Efforts have

been made to improve the efficiency of PPM [6], [8], [17]

and BWT [1], [3], [18].

An alternative approach, however, is to develop generic,

reversible transformations that can be applied to a source

text that improves an existing algorithm‟s ability to

compress. Thus Preprocessing techniques came in to being.

Several significant observations could be made regarding

this model. The transformation has to be perfectly

reversible, in order to keep the lossless feature of text

compression [12]. The compression and decompression

algorithms remain unchanged, thus they do not exploit the

transformation-related information during the compression

[17], [22]. These notions are clearly depicted in the Fig1.

The goal is to boost the compression ratio in comparison

with that obtained using the compression algorithms alone.

Thus these techniques achieve much better compression

ratio.

http://en.wikipedia.org/wiki/Encoding
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Bit

P. Jeyanthi et al, Journal of Global Research in Computer Science, 3 (8), August 2012, 56-62

© JGRCS 2010, All Rights Reserved 57

Figure. 1 Text compression paradigm incorporating a lossless, reversible

transformation

As shown in the above fig, text preprocessing algorithms are

reversible transformations, which are performed before the

actual compression scheme during encoding and afterwards

during decoding. The original text is offered to the

transformation input and its output is the transformed text,

further applied to an existing compression algorithm.

Decompression uses the same methods in the reverse order:

decompression of the transformed text first and the inverse

transform after that. Since textual data make up a substantial

part of the internet and other information systems, efficient

compression of textual data is of significant practical
interest.

In the subsequent sections we put in words the Length Index

Preserving Transformation (LIPT) [9], Initial Letter

Preserving Transform (ILPT), Numerical Index Transform

(NIT), Literal Index Transform (LIT) [16] and finally the

StarNT [19] Transform. The last section holds the

conclusion remarks.

LENGTH INDEX PRESERVING TRANSFORM

(LIPT)

The core concept of compression is to transform the text

into some intermediate form which can be compressed with

better efficiency and which exploits the natural redundancy

of the language in making this transformation. LIPT

encoding scheme by Fauzia S. Awan and Amar Mukherjee
[9], [2] makes use of recurrence of same length of words in

the English language to create context in the transformed

text that the entropy coders can exploit. LIPT uses letters of

the alphabet to denote lengths of the words. Hence these

letters will be repeated again and again in the transformed

text resulting in better context. In addition to this, LIPT also

uses the letters of the alphabet to denote the offset within a

block of words in the English dictionary having the same

length. This serves to induce additional context in the

transformed text.

Word frequency data from Calgary [5], Canterbury [5] and
Gutenberg Corpus [10] are collected to support the central

theme of repetition of length of words in English text. From

the Fig.2 it is clear that the maximum number of words has

length 3 and most words lie in the range of length 2 to 9

after which the word frequency comes to negligible level.

Figure: 2 Frequency of words Vs length of words in test corpus

LIPT comprises of two steps,

Step1: Make an efficient dictionary

Step2: Encode the input text data

The description of LIPT is as follows. A dictionary D of

words in the corpus is partitioned into disjoint dictionaries

Di, each containing words of length i, where i = 1,2…n.

Each dictionary Di is partially sorted according to the
frequency of words in the corpus. Then a mapping is used to

generate the encoding for all words in each dictionary Di.

Di[j] denotes the jth word in dictionary Di. In LIPT, the jth

word Di[j], in the dictionary D is represented as

*Clen[c][c][c] (the square brackets denote the optional

occurrence of a character or letter of the alphabet enclosed

and are not part of the transformed representation) where

Clen stands for a character in the alphabet [a-z, A-Z] each

denoting a corresponding length [1-26, 27-52] and each c

cycles through [a-z, A-Z]. If j = 0 then the encoding is *

Clen. For j>0, the encoding is * Clen c[c][c]. Thus, for 1 £ j £
52 the encoding is * Clenc; for 53 £ j £ 2756 it is * Clencc,

and for 2757 £ j £ 140608 it is * Clenccc. Let us denote the

dictionary of words containing the transformed words as

DLIPT. Thus, the 0th word of length 10 in the dictionary D

will be encoded as “*j” in DLIPT, D10[1] as “*ja”, D10[27]

as “*jA”, D10[53] as “*jaa”, D10[79] as “*jaA”, D10[105]

as “*jba” , D10[2757] as “*jaaa”, D10[2809] as “*jaba”,

and so on.

The transform must also be able to handle special

characters, punctuation marks and capitalization. The

character „*‟ is used to denote the beginning of an encoded
word. The character „~‟ at the end of an encoded word

denotes that the first letter of the input text word is

capitalized. The character „`‟ denotes that all the alphabets

in the input word are capitalized. A capitalization mask,

preceded by the character „^‟, is placed at the end of

encoded word to denote capitalization of alphabets other

than the first letter and all capital letters. The character „\‟ is

used as escape character for encoding the occurrences of „*‟,

„~‟, „`‟, „^‟, and „\‟ in the input text. The decoding process is

the reverse of the above mentioned encoding process.

Dictionary Making Algorithm:

a. Start constructing dictionary „D‟ (English language

dictionary with about 60,000 words taking 0.5 Mb

is used here)

P. Jeyanthi et al, Journal of Global Research in Computer Science, 3 (8), August 2012, 56-62

© JGRCS 2010, All Rights Reserved 58

b. Partition dictionary „D‟ in to disjoint dictionaries

D1, D2, …, Dn, where D1 possessing words of

length 1, D2 of length 2 and so on

c. Sort each disjoint dictionary according to their

frequency of occurrence

d. Start assigning addresses to the words as

Clen[c][c][c]

Where Clen denotes a character in the set [a-z,

A-Z], each character representing

corresponding length in set [1-26, 27-52]

e. Each c cycles through [a-z, A-Z].
f. Handle special characters as mentioned

Encoding steps:

a. The words in the input file are extracted

b. These words are searched in the Dictionary D using

a two level index search method.
c. If found, its position and block number (i and j of

Di[j]) are noted and the corresponding

transformation at the same position and length

block in DLIPT is looked up. This is the encoding

for the respective input word.

d. If the input word is not found in dictionary D then

it is transferred for output as it is.

e. Once the whole file or the entire text is transformed

as in steps 1 and 2, the transformed text is then fed

to a compressor (e.g. Bzip2, PPM etc.).

Decoding steps:

a. Using the compressor as was used at the sending

end, the received encoded text is first decoded and

the transformed LIPT text is recovered.

b. Reverse transformation is then applied on the

decompressed transformed text. The words with „*‟

represent transformed words and those without „*‟
represent non-transformed words and do not need

any reverse transformation. The length character in

the transformed words gives the length block and

the next three characters give the offset in the

respective block and then there might be a

capitalization mask. The words are looked up in the

original dictionary D in the respective length block

and at the respective position in that block as given

by the offset characters. The transformed words are

replaced with the respective English dictionary D

words.

c. The capitalization mask is applied.

This scheme allows for a total of 140608 encodings for each

word length. Since the English words re limited to a

maximum length of around 22 and the maximum number of

words in any Di in the English dictionary is less than

10,000, this scheme deals with all English words in the

dictionary.

ILPT, NIT, AND LIT TRANSFORMS

The three transform methods to be portrayed here are all

derived by Radu RADESCU [14], [15] from Length-Index

Preserving Transform (LIPT), which is presented in the

previous section. ILPT, NIT, and LIT do lossless reversible

text transforms, and are based upon LIPT Transform [2],

[14], [15]. These methods do not offer a significant increase

in the execution time performance, because they use the

same method of loading a dictionary as LIPT does, and the

static dictionary and the code dictionary remain the same.

Initial Letter Preserving Transform (ILPT) is similar to

LIPT [8] in all the aspects except the characteristic that the

dictionary is sorted in blocks according to the initial letters

of the words instead of length. Then descending order of

frequencies of occurrence, the words in each block of letters

are sorted. Thus the character used for LIPT is the length of

the coded word but in the case of ILPT, it is the first letter of

the coded word, that is instead of * Clen[c][c][c], for ILPT is
*Cinit[c][c][c], where Cinit represents the first letter of the

coded word. Besides that single feature, everything else

remains as for LIPT.

Numerical Index Transform (NIT) uses variable addresses

based on numbers instead of letters of the alphabet. When

this method applied on English dictionary D which is sorted

first by length of the words and then the frequency of their

appearance, offered a performance inferior to LIPT. And

hence, the dictionary was sorted globally in descending

order of the frequency of appearance of the words. No
sorting of blocks in the newly created dictionary. The

transformed words are represented by the character “*”

followed by the corresponding code of the respective word.

This way the first word is coded as “*0”, the 1000th word is

coded as “*999”, and so on. Special characters are treated

the same way as was done in LIPT.

Literal Index Transform (LIT) method is very much similar

to NIT, except that here, for the specification of the linear

address of a word in the dictionary, the alphabets [a–z; A–Z]

are used instead of numbers.

In these transformations, the size of the dictionary of

transformation is variable depending on the individual

transform. From the observations, it is clear that ILPT has

the dictionary of transformation with the smallest size.

Another fact is that the frequency of the repeated words

remains the same in the original text file and the

transformed one, only the frequency of the characters

changes. This factor, together with reducing the file size,

contributes to a better compression by using these

transforms. Also, arranging words in descending order of

their frequency of use, leads to use shorter codes for words
used more often and longer codes for less used words. This

again leads to smaller size of the files.

STARNT TRANSFORMATION

Star New Transform (StarNT), a fast transform algorithm
was proposed by Weifeng Sun, Nan Zhang and Amar

Mukherjee [19]. This method is superior to LIPT [9] not

only in compression performance, but also in time

complexity. When bzip2 and PMD assisted with StarNT,

both achieves a better compression performance. In this

transformation, Ternary Search Tree [11] is applied to

accelerate the transform encoding. Searching in Ternary

search trees are quite straightforward. Furthermore, ternary

search trees are quite space efficient. Figure 3 illustrates a

ternary search tree for seven words (a, air, all, an, and, as,

at) where only 9 nodes instead of 16 nodes are used.

P. Jeyanthi et al, Journal of Global Research in Computer Science, 3 (8), August 2012, 56-62

© JGRCS 2010, All Rights Reserved 59

Figure. 3 Illustration of a Ternary Search Tree

In the transform encoding module, words in the transform

dictionary are stored in the ternary search tree with the

address of corresponding codewords. The ternary search tree

is split into 26 distinct ternary search sub-trees. The root

addresses of these ternary search sub-trees are stored in an

array. Each ternary search tree contains all words with same

initial characters. For example, all words with initial

character „a‟ in the transform dictionary exist in the first

ternary search sub-tree, while all words with initial character

„b‟ exist in the second sub-tree, and so on.

The order in which we insert nodes into the ternary search

tree has a lot of performance impact. First, this order

determines the time needed to construct the ternary search

tree of the transform dictionary. Second, it also determines

the performance of the search operation that is the key factor

of the transform efficiency. In this transform the natural

order of words in the transform dictionary is followed.

Results show that this approach works very well.

Dictionary Mapping:

The transform dictionary used is prepared in advance, and

shared by both the transform encoding module and the

transform decoding module. The words in the transform

dictionary D are sorted according to the following rules:

Most frequently used words are listed in the beginning of

the dictionary in the decreasing order of their frequency of
occurrence. There are 312 words in this group.

The remaining words are sorted in D according to their

lengths. Words with longer lengths are stored after words

with shorter lengths. Words with same length are sorted in

the decreasing order of their frequency of occurrence.

To gain a much better compression performance for the

backend data compression algorithm, only letters [a..z, A..Z]

can be used to represent the codeword.

The first 26 words are assigned “a”, “b”, …,“z” as their
codewords. The next 26 words are assigned “A”, “B”, …,

“Z”. The 53rd word is assigned “aa”, 54th “ab”. Following

this order, “ZZ” is assigned to the 2756th word in the

Dictionary. The 2757th word is assigned “aaa”, the

following 2758th word is assigned “aab”, and so on. Using

this mapping mechanism, totally 52+52*52+52*52*52 =

143,364 words can be included in the Dictionary. Capital

conversion technique is also introduced by placing the

escape symbol and flag director at the end of the codewords.

Transform Encoding:

In this transformation, the character „*‟ means that the

following word does not exist in the transform dictionary D.

The key reason for this change from the earlier Star family

is to reduce the size of the transformed intermediate file and
thus the encoding/decoding time of the backend

compression algorithm can be minimized.

The initial letter capitalized words and all-letter capitalized

words are handled by some specialized operations. The

character „»‟ appended to the transformed word denotes that

the initial letter of the corresponding word in the original

text file is capitalized. The appended character „ ` ‟ denotes

that all letters of the corresponding word in the original text

file are capitalized. The character „n‟ is used as escape

character for encoding the occurrence of „*‟, „»‟, „ ` ‟ , and
„n‟ in the input text file.

Encoding Algorithm:

a. Initiate a Transformer

b. Read the input text

c. If word exist in Transform Dictionary

Replace word with corresponding codeword
Append special symbol if necessary

Else

Prefix the word with character „*‟

d. Continue steps 2 and 3 till end of file

The transform decoding module performs the inverse

operation of the transform encoding module.

EXPERIMENTAL RESULTS

In this section the tables showing the comparison between

various algorithms are given. In Table I, the compression

results in terms of average bits per character (BPC) is given.

To support the point of repetition of length of words in

English text, the word frequency data from Calgary,

Canterbury [5] and Gutenberg corpus [10] are used.

The compression results on text files derived from

Canterbury, Calgary [5] and Gutenberg corpus [10] show

compression ratio improvement of around 5% for BZip2

with LIPT. The compression results also show an

improvement in the range of around 2% to 7% for

compression methods with LIPT [14].

Table 1: BPC Comparison between original Bzip2 –9, and Bzip2 –9 with

LIPT for the files in three Corpuses

P. Jeyanthi et al, Journal of Global Research in Computer Science, 3 (8), August 2012, 56-62

© JGRCS 2010, All Rights Reserved 60

From the table, it is clear that LIPT outperforms Bzip2. For

example, when we have a look at the average BPC of the

selected Calgary files, it is 2.36 for Bzip2 and only 2.22 for

Bzip2 with LIPT. This is a remarkable difference

Software compression [7], [13], [15] results are presented

for the files using Initial Letter Preservation Transform

(ILPT), Literal Index Transform (LIT) and Numerical Index

Transform (NIT) with the classic archiver WinRar (see

Tables II– IV). For the purpose of evaluation, some

representative Romanian text files and two test files, called
“book1” and “book2” are taken from the set of evaluation of

lossless compression algorithms Calgary Corpus [5].

Table 2: Initial letter preserving transform

Table 3: Numerical Index Transform

Table 4: Literal Index Transform

In the following graphical representations (Fig 4-9) there is

a noticed improvement in the compression of files with

increase in the size of the file. As transformation algorithm
is based on the exploitation of redundancy, larger the file,

better the compression.

Figure 4. The original and ILPT transformed file Figure 5. WinRar archived file with and without ILPT

Figure 6. The file with and without NIT Figure 7. WinRar archived file with and without NIT

P. Jeyanthi et al, Journal of Global Research in Computer Science, 3 (8), August 2012, 56-62

© JGRCS 2010, All Rights Reserved 61

Figure 8. The file with and without LIT Figure 9. WinRar archived file with and without LIT

Now the experimental data for StarNT is illustrated in Table

V. All these data are average values of 10 runs. The results

can be summarized as follows:

a. The average transform encoding time using new

transform is only about 23.7% of that using LIPT.

b. The average transform decoding time using new

transform is only about 15.1% of that using LIPT.

c. Especially, the speed of transform encoding phase

and decoding phase of the transform algorithm is

asymmetric. The decoding module runs faster than

encoding module by 39.3% averagely. The main

reason is that the simple address calculating

function used in the transform decoding module is

more efficient than the ternary search tree used in
the transform encoding module.

Table 5: Comparison of Transform Time

Table 6: Comparison of Encoding Speed

Table 7: Comparison of Decoding Speed

Now the compression ratio of bzip2+StarNT, bzip2+LIPT
along with the results of bzip2 alone is illustrated in Table

V. The average compression ratio using only bzip2

algorithm is 2.36 and using the bzip2 algorithm along with

the LIPT technique is 2.06 which emphasizes better

compression improvement. StarNT compressor shows better

compression results when compared with LIPT which gives

compression ratio of 1.94%.

Table 8: Comparative Compression Results of Starnt with Lipt

CONCLUSIONS

This paper presents important results in preprocessing for

lossless compression algorithms using a set of transforms

for different text files. Bzip2 with LIPT shows an

improvement of 5.24% over the original Bzip2 –9. Also

another important result is that Bzip2 with LIPT is much

faster in time performance. When focusing attention over
ILPT, NIT and LIT, all three transforms present significant

improvements over the original files in terms of

P. Jeyanthi et al, Journal of Global Research in Computer Science, 3 (8), August 2012, 56-62

© JGRCS 2010, All Rights Reserved 62

compression rate. There is not a distinction to be seen

between transforms, ie., no one can say that one is better

than the other. Again it is very remarkable that bzip2 +

StarNT could provide a better compression performance that

maintains a convincing compression and decompression

speed while it is compared with LIPT. StarNT preprocessing

skill uses temary search tree to accelerate changes in

encoding operation and hashing method in decoding

execution to hurry up the transformation. The StarNT works

better than LIPT when is applied with backend compressor.

REFERENCES

[1] Arnavut. Z, “Move-to-Front and Inversion Coding”,

Proceedings of Data Compression Conference, IEEE

Computer Society, Snowbird, Utah, March 2000, pp. 193-

202

[2] Awan F.S., Zhang N., Motgi N., Iqbal R.T., Mukherjee A.,

LIPT: A Reversible Lossless Text Transform to Improve

Compression Performance, Proc. of Data Compression

Conf., Snowbird, UT, 2001.

[3] Balkenhol. B, Kurtz. S, and Shtarkov Y.M, “Modifications

of the Burrows Wheeler Data Compression Algorithm”,

Proceedings of Data Compression Conference, IEEE

Computer Society, Snowbird Utah, March 1999,pp. 188-

197.

[4] Burrows M and Wheeler D.J, “A Block – sorting Lossless

Data compression Algorithm”, SRC Research report 124,

Digital Research Systems Research Centre.

[5] Calgary and Canterbury Corpi

http://corpus.canterbury.ac.nz

[6] Cleary J G., Teahan W J., and Ian H. Witten, “Unbounded

Length Contexts for PPM‟, Proceedings of Data

Compression Conference, IEEE Computer Society,

Snowbird Utah, March 1995, pp. 52-61

[7] Derived classes MyTabCtrl:

http://www.codersource.net/mfc ctabctrl.html

[8] Effros M, “PPM Performance with BWT Complexity: A

New Method for Lossless Data Compression”, Proceedings

of Data Compression Conference, IEEE Computer Society,

Snowbird Utah, March 2000, pp. 203-212.

[9] Fauzia S. Awan, Amar Mukherjee, “LIPT : A Lossless

Text Transform to Improve Compression,” In Proceedings

of International Conference on Information and Theory :

Coding and Computing, Las Vegas, Nevada, 2001. IEEE

Computer Society

[10] Gutenberg Corpus

http://www.promo.net/pg/

[11] J. L. Bentley and R. Sedgewick. Fast Algorithms for

Sorting and Searching Strings. In Proceedings of the 8th

Annual ACM-SIAM Symposium on Discrete Algorithms,

New Orleans, January 1997.

[12] Moffat A, “Implementing the PPM Data compression

scheme”, IEEE Transaction on Communications, 38(11):

1917-1921, 1990.

[13] Ostream libraries:

http://www.cplusplus.com/reference/iostream/ostream/

[14] Radescu R., Lossless Text Compression Using the LIPT

Transform, Proceedings of the 7th International Conference

Communications 2008 (COMM2008), pp. 59–

62,Bucharest, Romania, 5–7 June 2008.

[15] Radescu R., Transform Methods Used in Lossless

Compression of Text Files, RomanianJournal of

Information Science and Technology (ROMJIST),

Publishing House of the Romanian Academy, Bucharest,

vol. 12, no. 1, pp. 101–115, 2009, ISSN 1453-8245.

[16] Radu RADESCU, “LIPT – Derived Transform Methods

used in Lossless compression of Text”, U.P.B Sci. Bull.,

Series C, Vol. 73, Iss. 2, 2011

[17] Sadakane K, Okazaki T, and Imai H, “Implementing the

Context Tree Weighting Method for Text Compression”,

Proceedings of Data Compression Conference, IEEE

Computer Society, Snowbird Utah, March 2000, pp. 123-

132

[18] Seward J, “On the Performance of BWT Sorting

Algorithms”, Proceedings of Data Compression

Conference, IEEE Computer Society, Snowbird Utah,

March 2000, pp. 173-182.

[19] W. Sun, A. Mukherjee, N. Zhang, “A Dictionary-based

Multi-Corpora Text Compression System,” Proceedings of

the 2003 IEEE Data Compression Conference, ,March

2003.

[20] Witten I H., Moffat A, Bell T, “Managing Gigabyte,

Compressing and Indexing Documents and Images”, 2nd

Edition, Morgan Kaufmann Publishers, 1999.

[21] Ziv J and Lempel A, "A Universal Algorithm for

Sequential Data Compression," IEEE Transactions on

Information Theory, pp. 3.

Short Bio Data for the Author

Jeyanthi.P. Completed B.Sc (Physics) followed by
Master of Computer Applications in Madras Christian

College, Chennai. Completed Master of Business

Administration (IS) in 2010. Worked as Assistant Professor

for a period of three years and as IT Admin, Singapore for

an year. Currently pursuing Master of Philosophy in the area

of Data Compression in Saraswathy Thyagaraja College,

Pollachi.

Anuratha. V. Pursued B.Sc (Computer Science) at

PSG College of Arts & Science, Coimbatore, during the
period of 1992 – 95. Completed Masters Degree in

Computer Applications in the year 1999 and Master of

Philososphy in 2002. Currently doing Ph.D in the area of

Wireless Networks in verge of completion. Published more

than 5 Research papers. Guided many Scholars. Currently

workig as Assistant Professor in PG Department of

Computer Applications, Sree Saraswathy Thyagaraja

College, Pollachi

