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ABSTRACT:Many application processes in industries typically requires control over at least two variables. This could 
use at least two control loops and makes it as multi-input multi-output (MIMO) or multivariable systems. Quadruple 
tank process (QTP) is one of the multivariable laboratory processes with four interconnected water tanks. This novel 
deals with mathematical modeling of the QTP by linearization principles and Jacobian matrix formation to represent 
the system in state space model.  The linearized dynamics of the system have a multivariable zero that can be placed in 
both the left and right half of s-plane. The interaction between the control loops are studied using RGA and analyzed 
using LabVIEW. This process is ideal for illustrating multivariable control concept and also the performance 
limitations due to multivariable right half-plane zeros. 
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I. INTRODUCTION 
 

A System may be classified into various types based on the inputs and outputs like SISO (Single input Single 
Output) and MIMO (Multi Input Multi Output). A SISO is a simple system with a single input and single output while 
MIMO system is a system with more than one input and outputs [1]. The QTP design is a well-known MIMO system 
suitable for analysis of various control schemes used in real-time which have nonlinear dynamics. Some systems 
cannot be represented by a linear model and require the use of nonlinear models. The nonlinearity in QTP is due to the 
square root term in mass flow relationship, between flow and level of the tank. The nonlinear models create more 
difficulty in optimizing the system and also its performance becomes poor. [6] The linearization of this type of system 
requires a stationary point around which the system operates. Taylor series expansion is one of the methods used for 
linearization which approximates the system at a given stationary point. Generally any system can be represented by 
state-space or Input-output model. Here it deals with the uses the former model where A, B, C and D of the state-space 
representation are obtained using Jacobian matrices. 

The stability of the nonlinear system can be analyzed by various methods like Lyapunov direct method, Popov 
criterion, method of linearization. It is possible to define the stability of the nonlinear system by also using the zeros by 
mapping them in real and imaginary axis known as Pole-Zero Map.Pole-Zero Map is a plot of the poles and zeros of a 
system model on the complex plane, where the real values are on the x-axis, and imaginary values are on the y-axis.  

Many real-time MIMO systems have interactions that occur due to inputs affecting more than one controlled 
variable. In QTP, a strong interaction exists between the tank 1 and tank 3 and also between tank 2 and tank 4. This 
happens due to input from pump 1 filling tank 1 and 3 along with output from tank 3 filling tank 1. Similarly 
interaction is present between tank 2 and tank 4. This interaction has adverse effect on effective control. The Relative 
Gain Array (RGA) is a measure of interaction between the control loops in multivariable control system [3]. 

When the MIMO system is such that each input only affects one particular output, different from the outputs 
affected by other inputs, the system is decoupled or non-interacting [8]. This novel deals with a real time 
implementation of Quadruple tank process which was modeled in two different approaches and analyzed the 
performance using MATLAB.  
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II. FOUR TANK PROCESS 

The Quadruple tank is a laboratory process with four interconnected tanks and two pumps as shown in Figure 1. 
The process inputs are u1 and u2(input voltages to pumps, 0-10V) and the outputs are y1 and y2 (voltages from level 
measurement devices 0-10V). The target is to control the level of the lower two tanks with inlet flow rates [9]. 

The output of each pump is split into two using a three-way valve. Pump 1 is shared by tank 1 and tank 3, while 
pump 2 is shared by tank 2 and tank 4. Thus each pump output goes to two tanks, one lower and another upper diagonal 
tank and the flow to these tanks are controlled by the position of the valve represented as γ. The position of the two 
valves determines whether the system is in the minimum phase or in the non-minimum phase. Let the parameter γ be 
determined by how the valves are set [3]. 

Each tank has a discharge valve at the bottom. The discharge from tank 4 goes to tank 1 while discharge of tank 3 
goes to tank 2. This interaction creates a strong coupling between the tanks which makes it a multivariable control 
system. Due to its strong nonlinear behavior, the problem of identification and control of QTP is always a challenging 
task for control systems engineer.Discharge from tank1 and tank 2 goes to the reservoir tank at the bottom [2]. 

 

Fig 1: Schematic of a MIMO Process 
 

III. MODEL DEVELOPMENT 
 

Modelling of a process is necessary to investigate how the behaviour of a process changes with time under 
influence of changes in the external disturbances and manipulated variables and to consequently design an appropriate 
controller [4]. This uses two different approaches, one is experimental and the other is theoretical. In such case a 
representation of the process is required in order to study its dynamic behaviour. This representation is usually given in 
terms of a set of mathematical equations whose solution gives the dynamic behaviour of the process. [10] 

For each tank i=1…4, the mathematical modelling is done by consideration of mass balance equation and 
Bernoulli’s law yields: 

Rate of Accumulation 
of Mass in system ൠ = ݋ݐ݊݅ ݁ݐܽݎ ݓ݋݈݂ ݏݏܽܯ 

݉݁ݐݏݕݏ ℎ݁ݐ ൠ −  
ݏݏܽܯ  ݐݑ݋ ݓ݋݈݂ 
݉݁ݐݏݕݏ ℎ݁ݐ ݂݋ ൠ 
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Before deriving the mathematical equations of the system lets consider, 
 The input to the pump 1 be V1& for pump 2 be V2. 
 The valve priority set for the flow is γ1γ2 [0, 1]. 
 The flow through the pump 1 when V1voltage is applied is k1V1 and for pump 2 when V2 voltage is applied is 

k2V2. 
 The flow through the pump is directly proportional to the input voltage applied for the pump. 
 The flow in the tank 1 after crossing the valve 1 is γ1k1V1 and for tank 2 after crossing the valve 2 is γ2k2V2. 
 The flow in the tank 4 after crossing the valve 1 is (1-γ1) k1V1 and for tank 3 after crossing the valve 2 is (1-γ2) 

k2V2. 
 

The non-linear model of the Quadruple tank process is given below. Mass balance equation states that  
[Rate of accumulation] = [Rate of in-flow] – [Rate of out-flow] 

 Using the law of conservation of mass, 
ௗ௠೅
ௗ௧

= ݉௜௡ −݉௢௨௧(1) 

Where, mT= mass accumulated in the tank 
min= input mass flow rate 
mout= output mass flow rate 

Mass accumulated, mT= volume of tank (v) * density of liquid in the tank (ρ) 

Input mass flow rate (min) = volumetric flow rate (qin)* density of liquid in the inlet stream (ρ1) 

Output mass flow rate (mout) = volumetric flow rate (qout)* density of liquid in the outlet stream (ρ2) 
ௗఘ௩
ௗ௧

= ௜௡ݍߩ −  ௢௨௧(2)ݍߩ

Since liquid using is same throughout the system, then ρ= ρ1 = ρ2. 

Modelling of non-linear Quadruple tank process is,  

A୧
ୢ୦౟
ୢ୲

= q୧୬౟ −  q୭୳୲౟(3) 

Where Ai denotes the cross sectional area of the tank, hi is the water level, ݍ௜௡೔ is the in-flow of the tank and 
 .௢௨௧೔is out-flow of the tanki=1...4ݍ

The ݍ௜௡೔ onlydepends on the input voltage supplied to the pump and theݍ௢௨௧೔ , depends on the acceleration due 
to gravity and the head of the water in the tank. The ݍ௢௨௧೔can be determined by the using Bernoulli’s equation and flow 
rate of the liquid. 

Therefore, 
௜௡భݍ =  γଵ݇ଵ ଵܸ 
q௜௡మ =  γଶ݇ଶ ଶܸ 

௜௡యݍ =  ݇ଶ ଶܸ(1 − γƔଶ) 
௜௡రݍ =  ݇ଵ ଵܸ(1 − γƔଵ)(4) 

 
Where ݇ଵ , ݇ଶare the pumps constant, V1, V2 are the velocity of the flow of water through pump 1 and 2, γ1γ2are 

the valve ratio. 
q௢௨௧೔ =  ܽ௜ඥ2݃ℎ௜(5) 

Where, 
ai = cross sectional area of the outlet pipes, g = acceleration due to gravity, hi = represents level of the water in each 
tanks i=1...4. 
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Tank 1 

 

Fig 2: Mass-balance equation for Tank 1  
 

Using the law of conservation of mass, 
[Rate of accumulation] = [Rate of in-flow] – [Rate of out-flow] 

ଵܣ
݀ℎଵ
ݐ݀

= ௜௡భݍ + ௢௨௧యݍ  − ௢௨௧భݍ  

= γ1k1V1 + a3ඥ2݃ℎଷ – a1ඥ2݃ℎଵ(6) 
 
Tank 2 

 
Fig 3: Mass-balance equation for Tank 2 

 
Using the law of conservation of mass, 
[Rate of accumulation] = [Rate of in-flow] – [Rate of out-flow] 

ଶܣ
݀ℎଶ
ݐ݀ = ௜௡మݍ + ௢௨௧రݍ  ௢௨௧మݍ−  

= γ2k2V2+ a4ඥ2݃ℎସ – a2ඥ2݃ℎଶ(7) 
 

Tank 3 

 
Fig 4: Mass-balance equation for Tank 3 

 
Using the law of conservation of mass, 
[Rate of accumulation] = [Rate of in-flow] – [Rate of out-flow] 

ଷܣ
݀ℎଷ
ݐ݀ = ௜௡యݍ − ௢௨௧యݍ  

= (1-γ2) k2V2 – a3ඥ2݃ℎଷ(8) 
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Tank 4 
 

 
Fig 5: Mass-balance equation for Tank 4 

 
Using the law of conservation of mass, 
[Rate of accumulation] = [Rate of in-flow] – [Rate of out-flow] 

ସܣ
݀ℎସ
ݐ݀ = ௜௡రݍ − ௢௨௧రݍ  

= (1-γ1) k1V1– a4ඥ2݃ℎସ(9) 
The Final equations, 
 

݀ℎଵ
ݐ݀ =

γƔଵkଵVଵ
ଵܣ

+  
ܽଷඥ2݃ℎଷ

ଵܣ
−
ܽଵඥ2݃ℎଵ

ଵܣ
 

݀ℎଶ
ݐ݀ =

ƔஓଶkଶVଶ
ଶܣ

+  
ܽସඥ2݃ℎସ

ଶܣ
−
ܽଶඥ2݃ℎଶ

ଶܣ
 

݀ℎଷ
ݐ݀ =

(1− γƔଶ)kଶVଶ
ଷܣ

−
ܽଷඥ2݃ℎଷ

ଷܣ
 

ௗ௛ర
ௗ௧

= (ଵିஓభ)୩భ୚భ
஺ర

− ௔రඥଶ௚௛ర
஺ర

(10) 
 

The above non-linear differential equation represents mathematical model of the four-tank system. The tank is 
being mathematically modelled by using law of conservation of mass. It is always enough to develop a controller for a 
particular process using its mathematical model. But here in QTP there is a challenge, that due to its non-linearity and 
uncertainty it is difficult to develop a controller which must take a proper control action [5].  

IV. TAYLOR SERIES AND JACOBIAN CONVERSION 

The non-linear relationship in the equation (10) is due to the square root term present in those equations which 
makes the controller design difficult. To overcome the difficulty the linearization is required.The equation (10)issolved 
using Taylor series followed by Jacobian matrix transformation to obtain a state space form of the QTP. After obtaining 
the State space model of QTP the state space to transfer function conversion is done by using a simple conversion 
technique [13].  The initial step is to obtain a linear approximation of the differential equations which is done by Taylor 
series.  

If the mathematical model of QTP is being integrated to obtain h1, h2, h3 and h4it produces an infinite series of 
values [14]. It is common practice to approximate a function by using a finite number of terms of its Taylor series.The 
general form of differential equation can be represented by, 
 

ଵݔ݀
ݐ݀

= ଵ݂(ℎଵ,ℎଶ, … . . , ℎ௡ ,ଵݑ, ,ଶݑ … … ,  (௡ݑ
. 
. 

ௗ௫೙
ௗ௧

= ଵ݂(ℎଵ, ℎଶ, … . . , ℎ௡,ݑଵ ,ଶݑ, … …  ௡)(11)ݑ,
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The general vector form representation is, 
ݔ̇ =  (ݑ,ݔ)݂

Let ܪ௘ = ℎ௘ + ∆h 
௘ܷ = ௘ݑ + ∆u 

 
We use the Taylor series to yield the linear approximation. 
 
ݔ̇ = ௗ௫

ௗ௧
= ௘ܪ)݂ ,ܷ௘)          (12) 

= ݂(ℎ௘ + ∆h ,ݑ௘ + ∆u)          (13) 
= ݂(ℎ௘ (௘ݑ,  + ௗ௙

ௗ௛
(ℎ௘ ௘)∆h+ௗ௙ݑ, 

ௗ௨
(ℎ௘ ,ݑ௘)∆u +higher order terms. 

For simplification, the higher order terms are neglected. 
 

Let, 

ܣ =
݂ߜ
ℎߜ

(ℎ௘ (௘ݑ, =

⎣
⎢
⎢
⎢
⎡
ߜ ଵ݂

ℎଵߜ
⋯

ߜ ଵ݂

ℎ௡ߜ
⋮ ⋯ ⋮
ߜ ௡݂

ℎଵߜ
⋯

ߜ ௡݂

⎦ℎ௡ߜ
⎥
⎥
⎥
⎤

 

and 

ܤ = ఋ௙
ఋ௨

(ℎ௘, (௘ݑ =

⎣
⎢
⎢
⎡
ఋ௙భ
ఋ௨భ

⋯ ఋ௙భ
ఋ௨೙

⋮ ⋯ ⋮
ఋ௙೙
ఋ௨భ

⋯ ఋ௙೙
ఋ௨೘⎦

⎥
⎥
⎤
         (14) 

are the Jacobian matrices of  ݂ with respect to h and u, evaluated at the equilibrium point,[ୣܪ୘, uୣ୘]୘ 

The Jacobian is used to solve systems of differential equations at an equilibrium point or approximate solutions near an 
equilibrium point. 
 
Note thatௗு೐

ௗ௧
=  ௗ

ௗ௧
ℎ௘ +  ௗ

ௗ௧
∆ℎ(15) 

=  ௗ
ௗ௧
∆ℎ Where, ℎ௘  is constant.  

Furthermore, 
݂(ℎ௘ (௘ݑ. = 0 

 
ௗ௫
ௗ௧

= ௗ௙
ௗ௛

(ℎ௘ ௘) ∆h + ௗ௙ݑ,
ௗ௨

(ℎ௘,  ௘) ∆u(16)ݑ
 
Let 

A = ఋ௙
ఋ௛

(ℎ௘ ܤ         ௘)      andݑ, =  ఋ௙
ఋ௨

(ℎ௘  ௘)(17)ݑ,
Neglecting the higher-order terms, we arrive at the linear approximation. 

ௗ
ௗ௧
ݔ∆ = ݔ∆ܣ +  (18)ݑ∆ܤ

Similarly, if the outputs of the non-linear system is of the form, 
ଵݕ =  ݃ଵ(ℎଵ,ℎଶ, … . . ,ℎ௡,ݑଵ ,ଶݑ, … …  (௠ݑ,

ଶݕ =  ݃ଶ(ℎଵ,ℎଶ, … . . ,ℎ௡,ݑଵ ,ଶݑ, … …  (௠ݑ,
 . 
 . 
௣ݕ =  ݃௣(ℎଵ,ℎଶ, … . . , ℎ௡ ଵݑ, ଶݑ, , … …  ௠)        (19)ݑ,
Taylor series yields the following linear approximation. 
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ௗ௬
 ௗ௧

= ௘ܪ)݃ , ௘ܷ)(20) 

= ݃(ℎ௘ (௘ݑ,  + ௗ௚
ௗ௛

(ℎ௘ ௘)∆h+ௗ௚ݑ, 
ௗ௨

(ℎ௘ ,ݑ௘)∆u +higher order terms. 
 
Let, 

ܥ =
݃ߜ
ℎߜ

(ℎ௘ (௘ݑ, =

⎣
⎢
⎢
⎢
⎡
ଵ݃ߜ
ℎଵߜ

⋯
ଵ݃ߜ
ℎ௡ߜ

⋮ ⋯ ⋮
௣݃ߜ
ℎଵߜ

⋯
௣݃ߜ
⎦ℎ௡ߜ

⎥
⎥
⎥
⎤

 

and 

ܦ = ఋ௚
ఋ௨

(ℎ௘ (௘ݑ, =

⎣
⎢
⎢
⎡
ఋ௚భ
ఋ௨భ

⋯ ఋ௚భ
ఋ௨೙

⋮ ⋯ ⋮
ఋ௚೛
ఋ௨భ

⋯ ఋ௚೛
ఋ௨೘⎦

⎥
⎥
⎤
         (21) 

Neglecting the higher-order terms, we arrive at the linear approximation. 
ݕ = ݔ∆ܥ +  ݑ∆ܦ

  Linearization, 

ܣ =
݂݀
݀ℎ

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
ߜ ଵ݂

ℎଵߜ
ߜ ଵ݂

ℎଶߜ
ߜ ଵ݂

ℎଷߜ
ߜ ଵ݂

ℎସߜ
ߜ ଶ݂

ℎଵߜ
ߜ ଶ݂

ℎଶߜ
ߜ ଶ݂

ℎଷߜ
ߜ ଶ݂

ℎସߜ
ߜ ଷ݂

ℎଵߜ
ߜ ଷ݂

ℎଶߜ

ߜ ଷ݂

ℎଷߜ
ߜ ଷ݂

ℎସߜ
ߜ ସ݂

ℎଵߜ
ߜ ସ݂

ℎଶߜ
ߜ ସ݂

ℎଷߜ
ߜ ସ݂

⎦ℎସߜ
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The results of partial differentiation of the A matrix is given below:  

A =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −

ଵ

భ்
0 ஺య

஺భ య்
0

    0 − ଵ

మ்
0 ஺ర

஺మ ర்

0 0 − ଵ

య்
0

0 0 0 − ଵ

ర் ⎦
⎥
⎥
⎥
⎥
⎥
⎤

                                                                                                         (22) 

 

ܤ =
݂݀
ݑ݀

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
ߜ ଵ݂

ଵݑߜ
ߜ ଵ݂

ଶݑߜ
ߜ ଶ݂

ଵݑߜ
ߜ ଶ݂

ଶݑߜ
ߜ ଷ݂

ଵݑߜ
ߜ ଷ݂

ଶݑߜ
ߜ ସ݂

ଵݑߜ
ߜ ସ݂

⎦ଶݑߜ
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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ܤ  =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

ఊభ௞భ
஺భ

0

0 ఊభ௞భ
஺భ

0 (ଵିఊమ)௞మ
஺య

(ଵିఊభ)௞భ
஺ర

0⎦
⎥
⎥
⎥
⎥
⎥
⎤

                                                                                                                                                     (23) 

 
 
The output equations are, 
ݕ = ݔ∆ܥ  (24)           ݑ∆ܦ+

There are two outputs from the process. They are the level of the lower two tanks. 

Y = ቀ
ଵݕ
ଶቁ = ൬݇௖ݕ 0 0 0

0 ݇௖ 0 0൰xݕଵ = ݇௖ℎଵ,  ݕଶ = ݇௖ℎଶ 

 

ܥ = ൬݇௖ 0 0 0
0 ݇௖ 0 0൰          (25) 

Actually the total output which is obtained from the system will be the levels of all the four tanks. And it is 
necessary that only the levels of the lower two tank is enough to be considered. 

State space method generates a matrix from the system differential equations by making each order of the 
derivatives into a variable.The state space representation serves as an alternative to transfer function representation of a 
system so that a SISO or a MIMO process can be treated equally. The state-space representation is best suited both for 
the theoretical treatment of control systems and for numerical calculations. The determination of the system response in 
the homogeneous case with the initial condition x (to) is very simple. For these many advantages the state space 
representation is carried out for the quadruple tank process. The linearized state space equation of a quadruple tank 
process is given as, 

 

ܺ̇ = ௗ௫
ௗ௧

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −

ଵ

భ்
0 ஺య

஺భ య்
0

    0 − ଵ

మ்
0 ஺ర

஺మ ర்

0 0 − ଵ

య்
0

0 0 0 − ଵ

ర் ⎦
⎥
⎥
⎥
⎥
⎥
⎤

ݔ +

⎣
⎢
⎢
⎢
⎢
⎢
⎡

ఊభ௞భ
஺భ

0

0 ఊమ௞మ
஺మ

        0 (ଵିఊమ)௞మ
஺య

(ଵିఊభ)௞భ
஺ర

0 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (26)ݑ

 
 

y = ൬݇௖ 0 0 0
0 ݇௖ 0 0൰(27)          ݔ 

 
The equation (26) and (27) gives the state space analysis ofthe QTP which is obtained from the developed 
mathematical model.  
 

V. TRANSFER FUNCTION MODEL 
 
The transfer function method applies a Laplace transformation to the differential equations, which allows handling 

them as a single algebraic equation [7].The key advantage of transfer functions is in their compactness, which makes 
them suitable for frequency-domain analysis and stability studies. However, the transfer function approach suffers from 
neglecting the initial conditions.To determine the transfer function for the QTP the following formula is used, 
 
(ݏ) ܩ = ܫݏ) ܥ − ܤଵି(ܣ +  (28)         ܦ
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Here, 

 A =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −

1
ଵܶ

0
ଷܣ
ଵܣ ଷܶ

0

    0 −
1
ଶܶ

0
ସܣ
ଶܣ ସܶ

0 0 −
1
ଷܶ

0

0 0 0 −
1
ସܶ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
 

ܤ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

ଵ݇ଵߛ
ଵܣ

0

0
ଵ݇ଵߛ
ଵܣ

0
(1 − ଶ)݇ଶߛ

ଷܣ
(1 − ଵ)݇ଵߛ

ସܣ
0⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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So,  

ܫݏ) − ଵି(ܣ  =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

భ்
ଵା௦ భ்

0 ஺య భ்
஺భ(ଵା௦ భ்)(ଵା௦ య்) 0

0 మ்
ଵା௦ మ்

0 ஺ర మ்
஺మ(ଵା௦ మ்)(ଵା௦ ర்)

0 0 య்
ଵା௦ య்

0

0 0 0 ర்
ଵା௦ ర் ⎦

⎥
⎥
⎥
⎥
⎥
⎤

     (29) 

 

ܫݏ) ܥ − ܤଵି(ܣ = ቎
భ்௞భ௞೎Ɣభ

஺భ (ଵା௦ భ்)
భ்௞భ௞೎௞మ(ଵିƔమ)

௞భ஺భ(ଵା௦ భ்)(ଵା௦ య்)
మ்௞భ௞೎௞మ(ଵିƔభ)

௞మ஺మ(ଵା௦ మ்)(ଵା௦ ర்)
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஺మ (ଵା௦ మ்)

቏      (30) 

 
 

(ݏ)ܩ = ቎
஼భƔభ

(ଵା௦ భ்)
஼భ௞మ(ଵିƔమ)

௞భ(ଵା௦ భ்)(ଵା௦ య்)
஼మ௞భ(ଵିƔభ)

௞మ(ଵା௦ మ்)(ଵା௦ ర்)
஼మƔమ

(ଵା௦ మ்)

቏        (31) 

 
Here the ratio ݇ଵ ݇ଶൗ  and ݇ଶ ݇ଵൗ  are approximately equal to 1. 
The corresponding transfer matrix is 

G(s) = ቎

େభƔభ
(ଵାୱ୘భ)

େభ(ଵିƔమ)
(ଵାୱ୘భ)(ଵାୱ୘య)

େమ(ଵିƔభ)
(ଵାୱ୘మ)(ଵାୱ୘ర)

େమƔమ
(ଵାୱ୘మ)

቏        (32) 

 
Where 
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Cଵ =  ୘భ୩ౙ୩భ
୅భ

andCଶ =  ୘మ୩ౙ୩మ
୅మ

 
 

Thus the equation [32] shows the transfer function of QTP which has been derived from state space equation. 
 

VI. MINIMUMPHASE AND NON-MINIMUM PHASE 
 
The system is said to be in minimum phase or non-minimum phase based on the location of the multivariable zeros 

of G(s). These zeros are the zeros of the numerator polynomial given as follows: 
det(ݏ)ܩ = ௖భ௖మ

ఊభఊమ∏೔సర
ర (ଵା௦்೔)

× ቂ(1 + ݏ ଷܶ)(1 + ݏ ସܶ) − (ଵିఊభ)(ଵିఊమ)
ఊభఊభ

ቃ(33) 

 
 
The system is found to be in non-minimum phase if 

0 < ଵߛ + ଶߛ < 1 
 
And found to be in minimum phase if 
1 < ଵߛ + ଶߛ < 2 

 
Fig 
6: 

Pole-Zero map for minimum phaseFig 7: Pole-Zero map for non-minimum phase 

The figure 6 and 7 clearly shows the pole and zero map of the system when it is operated in minimum phase (i.e. 
ଵߛ>1 + ଵߛ>ଶ<2) and non-minimum phase (i.e. 0ߛ +  ଶ<1). There is a pole shift to the right half of the s-plane when theߛ
system is operated in non-minimum phase. This causes the uncertainty of the process under study.  

 
VII. SIMULATION RESULT 

 
The result is obtained for the minimum phase and non-minimum phase operation of the quadruple tank process in 

both open loop and closed loop. The transfer function analysis and state space analysis are compared and the 
performance of the system is studied for the PI controller which is implemented.  
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Fig 8: Open loop response of the system in transfer Fig 9: Open loop response of the system in State function analysis 
in minimum phaseVariable analysis in minimum phase 

The figure 8 and 9 distinguishes the simulated output of the quadruple tank process in transfer function and state space 
analysis for the open loop operation. It is clear that the response obtained for the system is the tanks 1 and 2 takes short 
time to settle in transfer function model rather than the state space analysis of the system under study.  
 

 
Fig 10: Open loop response of the system in transfer function Fig 11: Open loop response of the system in State 

analysis in non-minimum phaseVariable analysis in non-minimum phase 

The figure 10 and 11 shows the simulated output of the quadruple tank process in transfer function and state space 
analysis for the open loop operation in non-minimum phase. In figure 10 the tank 1 and 2 settles quickly and sharply at 
10 and 12. And in the state space analysis the system takes much time of 200 sec to start to settle down. But the fact is, 
in state space analysis all the four tanks has given proper response in open loop operation.   
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Fig 12: Closed loop response of the system in Fig 13: Closed loop response of the system in 
transfer function analysis in minimum phaseState Variable analysis in minimum phase 

The figure 12 and 13 shows the simulated output of the quadruple tank process in transfer function and state space 
analysis for the closed loop PI controller operation in minimum phase. In figure 12 the tank 1 and 2 settles after it 
produce a small peak over shoot at 125 sec. In transfer function analysis the settling time takes 350 sec to settle down 
and has little oscillation.  In the state space analysis the system produces a sharp peak over shoot at 75 sec and takes 
much lesser time of 135 sec to start to settle down. Here in figure 13 all the four tanks settles and response is good for 
the PI controller. The value of PI controller is chosen using the root locus technique.The minimum phase response for 
both the transfer function and state space analysis provides a better and satisfactory result.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 14: Closed loop response of the system in State Variable analysis in non-minimum phase 
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The simulated output of the quadruple tank process in transfer function and state space analysis for the closed loop 
PI controller operation in non-minimum phase shows thatthe tank 1 and 2 response is very poor as it never settles in 
non-minimum phase operation for PI controller. The Controller fails to take action and the performance of the 
controller is not satisfactory. Figure 14 clearly shows there is a strong interaction between the tanks. The impact of the 
interaction and uncertainty is being clearly stated from the obtained response of the tanks both in transfer function and 
state space analysis. When comparing both the response the state space analysis provides a better and clear 
representation that the system can be studied in detail and much more clearly in state space analysis.  

 
VIII. CONCLUSION 

 
The state space method works better with complex time domain responses, while the transfer function method is a 

frequency domain model. The QTP is very well suited for demonstrating minimum phase and non-minimum phase 
system.  The study of transfer function and state space representation of the QTP helps in attaining a clear idea of the 
how the zero location in multivariable control systems affects the performance and act as the limitation for the 
controller performance. This is ultimately due to the effects of coupling and strong interaction effect between the tanks 
when it if operated in non-minimum phase. The response obtained in state space representation is much better than the 
transfer function. 
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