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ABSTRACT 
 

We introduce an innovative method for the investigation of human gait, which 

is based on the visualisation of the vertical component of the movement of the 

center of mass during walking or running, in the space of the coordinates 

position, velocity, and acceleration of the center of mass. Collected data has 

been numerically approximated by the best fitting curve for a non -linear model. 

The resulting equation for the best fitting plane or curve in this space is a 

differential equation of second order. The model that we suggest is a Duffing 

equation with coefficients that depend on the height of a walker or runner and 

on the angular frequency of the oscillation. Statistics about the distribution of 

the Duffing stiffness depending on the speed is presented. 

 

Keywords: Duffing stiffness; Statistics; Differential equation of second order ; 

Velocity; Centre of mass 
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INTRODUCTION 

 
Research on the mechanics of human gait can be of interest to different disciplines, for example sport science, 

medicine, and robotics. In this paper we discuss a model for the movement of the vertical coordinate of a person’s 

Centre of Mass (COM) during walking and running.  

Human locomotion is an inherently complicated process requiring the complex integration of neural and 

musculoskeletal control in response to both internal and external forces. In an attempt to strip away complexity and 

gain an understanding of the fundamental principles underpinning human locomotion, simple mechanical models have 

been developed. The mechanical simplification of locomotion allows the identification of just a few key parameters 

that can be manipulated to examine cause and affect relationships and identify which features most influence the 

system [1 ,2 ] . 

Blickhan suggested a linear spring-mass model for hopping in 1989 [3 ] . Other papers followed, for example [4 -7 ] . The 

motion of the center of mass is described by the equation mz t t+Kz=-mg, where m is the body mass, z is the vertical 

deflection of the center of mass with the origin on the treadmill surface and the direction chosen upwards. The 

constant K is the stiffness, and g is gravitational acceleration. By z t t  we denote the second derivative of z, i .e., the 

vertical acceleration of the center of mass. 

There have been different approaches on how to calculate leg stiffness. Blickha n’s approach uses the formula 

K=mω2
0 , where ω0  is the stride’s angular frequency of the oscillation, which, during gait, reflects t he stride’s angular 

frequency. 

The other approach for calculation of the leg stiffness is to find the ratio of F max , the maximum value of the vertical 

ground reaction force, and ∆L, the absolute value of the leg compression, i .e.,  K=Fmax/∆L. This definition of leg 

stiffness is used in several papers [4 -9 ] . An overview of these two approaches is presented in [6 ] . There is a third 

approach to leg stiffness calculation based on the measurements of loss of mechanical energy by walking/running, W. 

Leg stiffness K is found from the formula W=
 

 
 K(∆r)2 , where ∆r is the shortening of a spring. 

In examining mechanical and metabolic determinants of the human walking gait, Kuo [10] , and [11]  employed an 

anthropomorphic three dimensional, passive dynamic model, in which human legs were represented as rigid inverted 

pendulums with small point masses modelling each foot and a larger mass modelling the concentration of the COM at 

the pelvis. These studies drew on earlier models of a rigid swing leg du ring walking [12]  and continued the view that 

walking and running were two distinct gaits that could not be described using similar mechanical models. This view, 

however, was discounted by Geyer, Seyfarth, Blickhan [13]  who demonstrated that a compliant legged, spring-mass 

bipedal model consisting of two linear, equal and massless springs and a single COM point mass, as an extension of 

Blickhan’s one -dimensional model, reliably predicted ground reaction forces and COM behaviour in both human 

walking and running. Several subsequent studies further validated the efficacy of a bipedal spring  mass model of 

walking [4 ,12 -15] . While much of the twenty first century research in the field has adopted the bipedal spring -mass 

model and focused on adapting or adding se lected elements to improve prediction accuracy for both walking and 

running ga it mechanics, Blickhan’s spring mass model remains largely valid and has been applied, with modifications 

to suit certain parameters, in recent studies [16 ,17 ] . 

Our mathematical model is based on the analysis of the collected data of the three dimensional movement of COM. In 

this paper we concentrate on the projection of the movement of COM on the vertical axis. We plan to collect more data 

and apply our new method for the investi gation of projections on the horizontal axes the axis along the 

walking/running movement and the axis that is per pendicular to it . 

 We suggest a new approach for finding leg stiffness for the simple harmonic oscillation model, and then develop a 

more precise model assuming that the stiffness for a fixed speed is not a constant but depends on the displacement 

of the COM. The innovative idea of our method is to visualise the data for the vertical component of a motion of the 

COM, z(t), as a curve in the three dimensional space, (z, z t , z t t). Here z t  and z t t  are the first and the second derivatives 

of the function z(t), correspondingly. These curves are interesting by themselves as they are individual for each person 

and velocity. We provide examples  of the variety of these curves.  

In this paper we discuss the properties that are common for these curves. We apply the Fast Fourier Transform  (FFT) 

to the data and filter out the smaller frequencies.  

 

MATERIALS AND METHODS 

 
Data recording 
We have collected data for six participants aged from 18 to 55 years, three males and three females. The study 

followed ethical protocols as per ethics requirements (HE19-239). We have measured the vertical coordinates z(t) of 

the COM for each participant walking or running on the treadmill. The markers we used were the Left and Right PSIS 

and ASIS, then we computed the average of all four. Th e data was collected for different integer velocities, at 100 

frames per second, over 10 seconds, for each velocity, using an 8 camera, Qualisys Motion capture system with the 

COM reconstructed using a pelvic marker set within Visual3D.  
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Using MATLAB, we have visualised the data as curves in the three dimensional space (z, z t , z t t). We have filtered out 

high frequency oscillations, such as noise and individual features, using the fast Fourier transform function in 

MATLAB. For FFT threshold equal to 0.3, the curves are close to an ellipse. The direction of the motion along the curve 

is found, for example, in the following way. Find the point with the greatest z -coordinate. This is the highest point of 

the centre of mass during the gait cycle. The velocity at t his point is equal to zero. Hereafter the movement goes 

down, i .e.,  the velocity z t  becomes negative. In both pictures of Figure 1, from those perspectives, the movement is 

clockwise. 

 

 

Figure 1. A MATLAB 3D figure shown from different perspectives.  The green curve is a smoothed data curve with high 

pass FFT threshold 0.03, the red curve is a smoothed data with FFT threshold 0.3.  

 
 

Data interpretation 
The pictures in the space with the coordinates position, velocity, and acceler ation, are rich in information. For 

example, Figures 2 and 3 show the data for walking (4  km/hr) and running (9 km/hr) of a participant, correspondingly. 

Here we look into the projection to the plane z, z t t , i .e., the horizontal axis shows the position of the COM (in meters) 

and the vertical axis shows the acceleration (in m/sec 2). The part CD of both curves corresponds to the phase of the 

gait when a foot touches the surface of the treadmill. In the case of walkin g it is a flat line; vertical acceleration is 

close to zero. In the case of running, acceleration is diminishing because of braking during initial foot contact. The 

phase DE corresponds to the propulsion during toe off, where acceleration (and consequently  force) increases. On the 

segment EA acceleration diminishes, turns to zero when the the COM reaches its average position, and is minimal at 

the point A. The minimum acceleration for the walking curve is -2 m/sec2 , the minimum acceleration for the running 

curve is about -10 m/sec2 , i .e., close to the gravitation constant g. The acceleration is less during walking than during 

running because the body is always in contact with the ground whereas during running there is a flight phase. The arc 

AB on Figure 3 corresponds to the flight phase of running. This part of the curve is more complicated than just a flat 

constant z t t=-g, because it is smoothly connected with the rest of the curve. Some information that we get from these 

curves is common for all participants and walking/running speeds, but some features are individual for example not 

each participant has the “flight” component AB at running speeds, due to individualised transitions between walking 

and running gait patterns.  

Our aim in the future is to collect data for more participants and compare individual properties of the curves, see 

Section 9. In this paper we concentrate on their common properties, and suggest three models, based on differential 

equations. We build our three models based on data, purely numerically and mathematically. The first model is  well-

known, it is a harmonic oscillation. Our novelty here is the method we develop for computing leg stiffness.  

 

Figure 2. Data for walking, 4 km/hr. The horizontal axis shows the position and the vertical axis shows the 

acceleration of the COM. The part CD corresponds to the phase of the gait when a foot touches the surface, DE 

corresponds to the propulsion during toe  off, during EA the COM moves upwards and the acceleration diminishes.  
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Figure 3. Data for running, 9 km/hr. The horizontal axis shows the position and  the vertical axis shows the 

acceleration of the COM. The part CD corresponds to the phase of the gait when a foot touches the surface, DE 

corresponds to the propulsion during toe -off, during EA the COM moves upwards and the acceleration diminishes. The 

arc AB corresponds to the flight phase.  

 
 

Modelling gait as harmonic oscillator 
Best fitting plane and the interpretation of its coefficients : We begin with visualisation of the data. Consider a curve 

in the three dimensional space (z, z t , z t t) that represents smoothed gait data, as for instance the red line on Figure 1 

(FFT=0.3). This curve is not quite flat, but it is close to a flat  ellipse with the centre at z=z0 , z t=z t t=0. The equation of 

a plane in three dimensional space (z, z t , z t t) that passes through the point (z 0 , 0, 0) is 

 

az t t+bz t+c(z−z0)=0,    (1) 

 

where a, b, and c are constants, and z-z0  is the vertical displacement of the average of the center of mass. The zero 

for z(t) is chosen to be on the level of the treadmill, and the z -axis direction is upwards.  

We find the coefficients a, b, and c in equation (1) numerically, by finding the best fitting plane for the smoothed data 

curve. The equation for the plane is interpreted as a second order differential equation that describes a damped 

driven harmonic oscillator.  

The coefficients in equation (1), in the context of the spring model, have the meaning of a=m, which is the mass of 

the oscillating objec t, b=ν, which is the viscosity of the spring, and c=K, which is the spring stiffness,  

 

mz t t+νz t+K(z−z0)=0.   (2) 

  

If we consider a stable gait, we need to assume, in this linear model,  that the viscosity is zero. Equation  (2) turns to 

 

mz t t+K(z−z0)=0,    (3) 

 

Which is Hook’s Law that describes a movement of a spring with stiffness K  [ 18] . 

 

F(t)=−K(z(t)−z0).    (4) 

 

Where the gravitation constant is hidden 
We note that the gravitation constant is included in equation (2) implicitly. Namely, we can rewrite the equation as  

 

mz t t+νz t+K(z−zs t)=−mg.    (5) 

 

The coordinate zs t  is the average of the vertical coordinate of the centre of mass of a standing body but in a 

walking/running posture. It is not exactly the same as the  coordinate of COM in a standing position. The relation 

between z0  and zs t  is calculated from Equations (2) and (5) and is z0=zs t−mg/K. 

 

Modelling by a non-linear homogeneous differential equation 
Best fitt ing curve, interpreted as a non-linear second order differential equation: Non-linear gait dynamics has been 

discussed, for example, in [19] . The author remarks that stride to stride fluctuations, which are often considered to be 

noise, actually convey important information. With the aim to describe these fluctuations, we refine the method used 

for the harmonic oscillation model. We approximate the movement of the COM during wal king or running by a Duffing 
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equation, i .e.,  a homogeneous non-linear second order differential equation. We write  

 

mz t t+ν(t)z t+K(t)(z−z0)=0,   (6) 

Where, unlike the harmonic oscillation model, we consider stiffness and viscosity to not be constant, but functions 

depending on time, K(t) and ν(t). This makes sense, as stiffness and viscosity depend on a phase of a stride. For 

example, the slope on Figures 2 and 3 is changing, and the slope in the plane z, z t t  reflects stiffness: it is 
    

 
 at a time 

t. We divide both sides by m and consider the approximation of the functions v(t) =
    

 
 and k(t)=

    

 
 by cubic 

polynomials,  

 

z t t+(v1z t+v2z2
t+v3z3

t)+(k1(z−z0)+k2(z−z0)2+k3(z−z0)3)=0.   (7) 

 

As the value z0  is not known beforehand, we look for the best fitting curves of the form of least squares:  

 

z t t+v1z t+v2z2
t+v3z3

t+k1z+k2z2+k3z3+C=0.     (8) 

 

The best fitting curve in the chosen coordinates is a differential equation of second order. We visualize the solution of 

this differential equation as a curve in the same coordinate system as the data curve. See, for example , Figures 4, 7, 

8, where the red curve is the data curve and the blue curve is the solution of the differential equation given by the 

best fitting curve. Initial conditions are the values z(0) and  z t(0). Equation 8 is equivalent to equation (7) after 

expanding brackets and renaming coefficients. From our data, the viscosity coefficients v 1 , v2 , v3  turned out to be zero 

if the FFT threshold is large enough, for instance if it is   0.3. This is not surprising because we have assumed no 

excitation force (homogeneous equation), and the participants have maintained stable walking/running. If the 

viscosity is non-zero, the curve is a stable spiral approaching z 0 , as in Figure 8. Scaled mean squared error between 

the Duffing equation output and the observed data was computed. As the values z, z t  and z t t  have different units, each 

value was scaled by dividing by the difference between the minimum and maximum values on the corresponding axis.  

 

Finding and analysing the fixed points  
We are also interested in the fixed (equilibrium) points [20]  for the curves described by equation (8). We first rewrite 

the second order differential equation (7) as a system of first order differential equations:  

z t=z1 ,    (9) 

 

(z1) t=−v1z1−v2z2
1−v3z3

1−k1z−k2z2−k3z3−C.    (10) 

 

We remind that for stable gait v 1=v2=v3=0. The fixed points are found by solving the equilibriu m equations (see for 

example (3)) 

 

z1=0,    (11) 

−k1z−k2z2−k3z3−C=0,  (12) 

 

i .e., the fixed points are the roots of the cubic equation k 1z+k2z2+k3z3+C=0. The solutions to equation (8) are plotted 

in the same coordinate system as the data curves, see for example Figure 4. The solution curves are stable if we set 

one fixed point equal to zero, i .e., C=0. Then the two other fixed points occur at z 0  (the center of the closed curve, 

average coordinate of the center of mass during walking/running), and at h, which is approximately 2z 0  for stable 

walking/running. The differential equation equation (8) becomes 

 

z t t+kz(z−z0)(h−z)=0.  (13) 

 

The connection between the coefficients of equation (8) and equation 13 is 

 

k1=−kz0h, k2=k(h+z0), k3=−k, k>0, and v1=v2=v3=0.   (14) 

 

Numerical computations show that, for stable gait, the fixed point z=z 0  is a center, while the fixed points z=0 and z=h 

are saddles. 

 

Interpretation of the parameters in the model 
Equation (13) shows that we can model the movement of the center of mass by a Duffing equation, up to a constant k , 

knowing only h and z0 . The values h and z0  are close to the height of a person and to the average coordinate of the 

COM in motion, correspondingly. The gravitation constant g is involved implicitly in the differential equation, in a 

similar way as in the harmonic oscillation model.  
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The coefficient k does not have the meaning of the square of the angular frequency, ω 2=  
         

    
 , as in a linear case, 

but k behaves in a similar way: It increases with an increase of the walking/running speed. We call this constant the 

Duffing stiffness. The meaning of the coefficient k is found from the following consideration.  

We rewrite equation (13) as 

 

z t t+k(−(z−z0)3+(h−2z0)(z−z0)2+z0(h−z0)(z−z0))=0.   (15) 

  

For z close to z0  the linear approximation at z 0  is 

 

z t t+kz0(h−z0)(z−z0)=0.      (16) 

 

Comparing th is equation with Hook’s Law (equation (4)) we get an expression that relates the angular frequency ω 

with the coefficient k and the values z 0  and h: 

ω2≈kz0(h−z0). Hence, the Duffing stiffness  

 

k≈
  

        
.        (17) 

 

Case h = 2z0  

Assuming that the center z0  is approximately in the middle between two sad dle points, 0 and h, we get h=2z0 , and 

Equation (15) becomes 

 

z t t+k  
 (z−z0)−k(z−z0)3=0,      (18) 

 

where k>0, and 

  

ω2 

k≈
  

  
 .        (19) 

  

Equation (18) is the Duffing equation for a softening oscillator [3 ] , i .e., the stiffness diminishes with the displacement.  

 

Example based on the collected data 
Figure 4 shows the observed smoothed data curve (red) and the curve corr esponding to the solution of Equation (13) 

(blue) for one of the participants, together with the fixed points. The differential equation that describes the 

movement of the centre of mass of this participant running at the speed 8 km/hr is z t t+279(z−0.9)(1.8−z)=0. We have 

rounded |k3|=k to an integer, and z0  and h to the first decimal place (Figure 4). 

 

Figure 4. Curve (blue) for the solution to equation (8) with coefficients k1 , k2 , and k3=k for a participant (178 cm tall, 

running at 8 km/h) compared with the data curve (red). The mean  squared error is 0.015. The fixed points  are saddles 

at z=0 and z≈1.8 and the center at z0≈0.9 . 

 
 

We can check that equation (4) and the approximation equation  (17) are realistic by computing the number of strides 

in a second and comparing it with the real value. 
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From k=279, z0=
 

 
h=0.9 we can compute ω≈√

 

  
 ≈18.56, i .e., the number of strides in a second is 

 

  
≈2.95. This 

participant made 24 strides in 10 secs, i .e., the real number of strides in a second is 2.4.  

 

Statistical analysis 
UNE data: Figure 5 (left) shows that the Duffing stiffness depends on the speed of walking/running for each 

participant. By visually inspecting  the graph, we see some outlier  points. To further examine these, we calculated the 

standard deviation of Duffing stiffness for each participant, for the walking data . Two participants had standard 

deviations >400, while the rest of the participants had standard deviations <100. Our observation of these two 

participants during the data recording showed that they were uncomfortable wi th some of the speeds, and they 

reported having no experience with treadmills.  

Therefore, we excluded these two participants  from all further analyses. Figure 5 (right) shows the data for the 

remaining four participants.  

The behaviour of the Duffing stiffness is different for walking (3-8 km/hr) and running (9-14 km/hr). Therefore, we 

separately fit data for walking and running speeds. We fitted a linear mixed effect model for the walking data. We 

included speed as the fixed effect and Duffing stiffness as the dependent variable. We allowed both the slopes and 

the intercept to vary across participants. The model showed a slope estimate of  ̂ = 41.4, t=9.1, p=0.004. The 

intercept was -14.6, p=0.5. 

For the running data, we performed an equivalent analysis. Here , the slope associated with speed was not significant, 

though trending in a positive direction,  ̂ =13.9, t=3.0, p=0.05. The intercept was 245.6, t=4.0, p=0.02. 

 

Figure 5. Duffing stiffness depending on speed with and without outliers. We consider the models for walking and for 

running separately. 

 
 

Comparing UNE dataset against public datasets  
Next, we compare our data against public datasets for 42 walking participants [21] , and 29 running participants. As 

these sources were set up slightly differently than the UNE data, in order to match the data, we estimated the COM 

during walking or running, using the midpoint of the ASIS markers and subtracting the lowest value for t he heels 

marker. Figure 6 shows the relationship between speed and Duffing stiffness.  

 

Figure 6. Duffing stiffness as a function of speed, with and without outliers. Note that the Duffing stiffness, k, 

depends also on the height of the COM of a participant, z0 , and the angular frequency of walking/running, ω:k≈
  

  
 .  

 
 

First we removed one participant with only one data point. Then, to identify outliers, we calculated the standard 



Research & Reviews: Journal of Pure and Applied Physics                              ISSN: 2320-2459 

RRJPAP | Volume 11 | Issue 4 | July, 2023                                                                                                                                   8 

deviation in Duffing stiffness for each participant and excluded outliers for the walking and the running datasets, 

separately. For the walking data [22] , the standard deviation ranged from 39.2 to 3183.5. We chose to remove all 

participants with a standard deviation >100. This left us with 12 participants for the walking data. We proceeded to fit 

the data with a Linear Mixed Effect model, akin to the UNE data. Again, we get a significant effect of speed on Duffing 

stiffness,  ̂=36.7, t=11.8, p<0.0001. The intercept is not significant, 24.0, p=0.09. For the running data [21] , we 

removed three out of 29 participants with standard deviations >100. The Linear Mixed Effect model showed a 

significant effect of speed,  ̂=13.5, t=14.0, p<0.0001. The intercept is 188.1, t=19.7, p<0.0001. 

Finally, we compared the two datasets against each other, to determine whether there are any overall differences in 

Duffing stiffness, or whether there is difference in the relationship between speed and Duffing stiffness. We created 

two models, one for running and one for walking, includin g both of the trimmed datasets. In the Linear Mixed Effect 

model, Duffing stiffness acted as the dependent variable, and the fixed effects were speed, dataset UNE versus [21 ,22 ] , 

with UNE acting as a baseline. We allowed the slope and the intercept to vary  across participants. For walking, the 

effect of speed was, again, significant,  ̂=36.7, t=12.4, p<0.0001. However, the effect of dataset was not significant, 

 ̂=43.1, t=1.5, p=0.2, nor was the interaction between dataset and speed,  ̂=5.3, t=0.9, p=0.4. Similarly, in the 

running dataset, the effect of speed was  ̂=13.5, t=13.2, p<0.0001. Neither the effect of dataset, nor the interaction 

of dataset and speed were significant,  ̂=27.5, t=0.9, p=0.4 and  ̂=3.4, t=1.1, p=0.3, respectively.  

In summary, we found, overall, a significant positive relationship between speed and Duffing stiffness. For the running 

UNE data, the slope was not significant; however, when we combined the two datasets, the running slope was 

significant, and we found no interaction. Thus, the lack of significance in the UNE running data may be a result of low 

statistical power. We found no main effect of dataset, nor an interaction between dataset and speed. Thus, we find no 

evidence of a difference across datasets.  

  

Identifying and examining outliers 
From a practical perspective, an interesting aspect is participants whose data deviates from the fitted model. Here, 

we defined outliers based on standard deviation. This is the simplest method, which can easily be applied by a sport 

scientist. In our analyses, we drew a somewhat arbitrary threshold, where we treated all participa nts with a standard 

deviation >100 as outliers. In pract ice, this can act as a sign for  the practitioner to follow up on the walker or runner 

if their standard deviation is high.  

The reasons for high standard deviations could be different. For example, a typical problem for uncomfortable speeds 

less than 3 km/hr is an additional loop, as on the red line in Figure 7. The Duffing equation does not take in to 

account the loop, as the blue approximation curve demonstrates. The other example of a n outlier is illustrated in 

Figure 8, where the curve brakes down into two parts, corresponding to the left or to the right leg. Red lines represent 

the data, blue lines are the solutions of the differential equation  (Figure 8). 

 

Figure 7. Slow walking speeds (<3 km/hr). 
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Figure 8. Asymmetry of the gait due to often contain an additional loop because of different stre ngths of the left and 

the right the compelled braking during each step legs. 

 
 

A third reason for outliers that we noticed is an instability of walk, when each step varies in the amplitude and in the 

average height. 

 

Duffing equation with viscosity and excitation force  
Motivation: Approximation by a homogeneous equation with zero viscosity does not take into account the asymmetry 

caused by damping and excitation forces.  

For example, Figure 9 shows a smoothed data curve for a running participant (14 km/hr, FFT threshold=0.3) in the 

phase plane (z, z t). This curve is close to an ellipse, and the absolute value of the slope of the main axis of  the ellipse, 

CA, is equal to v=ν/m 

if we assume that the viscosity is a constant. (If the viscosity ν=0, the slope is vanishing, and the corresponding axis 

is horizontal.) The symmetry with respect to z t=0 is disturbed by the slope.  

Now we compare this slightly asymmetrical typical data curve with the symmetrical energy level curves,  see Figure 10. 

Solutions of equation (13) with different initial values of z(z t=0) give a set of energy level curves. The red curve is the 

data curve, the movement occurs in the direction ABCD. Energy is gained twice in each cycle (gait) in a phase of  a 

“step”, BC, and in a phase of a “fall” (in general not free fall), DA. The maximum of the energy occurs at points A and 

C, the minimum occurs when at points B and D. There is a natural desire to find an approximation that considers the 

viscosity and the restoring force.  

 

Figure 9. The absolute value of the slope MN multip lied by mass m is the viscosity ν .  
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Figure 10. The energy level curves (blue) and the data curve (red), the same as in Figure  9, in the phase plane (z, z t). 

 
 

RESULTS AND DISCUSSION 

 
Looking for the best fitting curve for a non-homogeneous differential equation 
We were looking for the best fitting curve in different forms, as for example z t t+vz t+C1z+C2z2+C3z3=f cos(Ωt−ϕ), where 

the term vz t  is the linear approximation of the damping force divided by mass, C 1 , C2 , and C3  are coefficients of the 

cubic nonlinearity. The constant f=F/m, where F is the amplitude of the excitation force and m is the mass, Ω is the 

angular frequency of the excitation force. The gravitation constant g is involved in the equation in a similar way as for 

the two already discussed models. We have also tried to find the best fitting  curve in the forms based on equations 

(13), (18). As in the previous models, the equation for the best fitting curve was interpreted as a second order 

differential equation. The solution of the equation was computed and plotted in the same system of coordinates as 

the data curve. However, the balance between the viscosity and excitation force was too delicate, and most solution 

curves became stable spirals. The balance worked with an FFT thres hold of 0.5, at least for some curves, based on 

equation (18), 

 

z t t+vz t+k  
 (z−z0)−k(z−z0)3=f cos(Ωt − ϕ).    (20) 

 

Example 
In Figure 11 the red data curve is approximated by a homogeneous differential equation (13) (blue curve), and by 

Equation (20) containing the damping and restoring forces (green curve). The mean squared error for the 

homogeneous equation is 0.01. The non-homogeneous equation gives a better approximation with the mean squared 

error 0.002. 

 

Figure 11. The data curve (red) is approximated by a second order homogeneous differential equation (blue) with the 

mean squared error 0.01, and by a second order non -homogeneous differential equation (green) with the mean 

squared error 0.002. 
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Plans for future research 
Classification of curves: One of the ideas for future research is to compare and classify curves for different 

participants. The curves can have individual features, see for example Figure 12 (FFT threshold 0.03).  

 

Figure 12. Comparison of curves for three participants walking at 6 km/hr . 

 
 

Also the left and right leg strides are almost indistinguishable if we chose an FFT threshold     0.3. But for some 

participants, we observe a difference in the slopes for even and odd strides if the FFT threshold  is smaller, suggesting 

sensitivity in identification of gait asymmetries. In Figure 13  the green curve (FFT threshold=0.03) is split into two 

parts. Recall that different slopes correspond to different angular frequencies. The black curve shows the same d ata 

smoothed with an FFT threshold of  0.3. Bipedal models were investigated using a rather mechanical approach in 

several papers as for example in  Hartmut Geyer, et al. and Horst-Moritz Maus, et al. [17 ,23 ] . 

 

Figure 13. Two curves for a participant walking 6 km/hr. The green curve for FFT threshold 0.03, the bl ack curve for 

FFT threshold 0.3. 

 
 

Horizontal components 
In this paper we have modelled only the vertical component of the movement of the COM. We plan to also in vestigate 

the horizontal components in the future. Our hypothesis is that the horizontal component that is perpendicular to the 

forward movement can be approximated by a second order differential equation with negative stiffness  [24] . 

 

Investigating possible reasons for injuries 
Our model gives an insight into the dynamics of human gait. The Duffing stiffness at a particular speed is 

approximately the same for each person who maintains a stable gait. If the Duffing stiffness differs, it points to some  
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uncomfortableness in walking or running. The reason for this uncomfortableness can be investigated by looking at the 

curves closely. We plan to investigate possible reasons for injuries by determining how the stress is generated  [25 ,26] . 

One possible idea is to investigate why female runners have more frequent ACL ( Anterior Cruciate Ligament) tears 

than men [27] . 

 

Summary 
We study the human gait modelled by the movement of the centre of mass of the test person. This is an example of a 

biological process which can be considered as a periodical dynamic system. Roughly, this movement behaves in a 

similar way to a vibrating mass suspended on a spring, but it is more complex. The vertical component of the 

movement during walking or running can be visualise d as an oscillogram: a graph of the position as a function of time. 

We suggest a visualisation of the data in 3D space, where the coordinates describe position, velocity, and 

acceleration. Our new visualisation method allows us to model the movement of a p erson’s centre of mass by a 

nonlinear differential equation. The resulting curve for an ideal spring -mass movement, without viscosity or external 

force, is an ellipse in the suggested 3D space. The shape of the data curve shows at which position an a dditional 

force was applied, or  the movement slowed down. Some deviations are common for all test persons and others are 

different. In the future we plan to investigate the reasons for these deviations, such as different running techniques 

or the presence of injuries. 

 

CONCLUSION 

 
We have introduced an innovative method for the investigation of human gait. This method is based on the 

visualisation of the vertical component of the movement of the center of mass during walking or running, in the space 

of the coordinates position, velocity, and acceleration of the center of mass. This method allows us to compute leg 

stiffness for an established harmonic oscillator model in a new way, as the slope of the best fitting plane. We 

determined some differences and some common features for walking and running curves. In this paper we 

concentrated on features that are common for walking and for running. We suggested a model by a non -linear 

homogeneous differential equation. For this model we need to know the average of the COM , z0 , during the gait 

motion, and a coefficient K that depends on a participant and on a walking/running speed. Assuming h=2z 0 , we get 

the Duffing equation for a softening oscillator  

 

mz t t+K  
 (z−z0)−K(z−z0)3=0.    (21) 

 

Statistics showing the dependence of the Duffing stiffness on the speed was shown separately for walking and for 

running speeds, using both our collected dataset and an open  dataset. 

We also had a partial success in approximation of the movement by a second order non -linear non-homogeneous 

equation 

 

mz t t+νz t+K  
 (z−z0)−K(z−z0)3=F cos(Ωt−ϕ).   (22) 

 

We believe that our new method is a tool that could lead to other interesting and novel results.  
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