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Abstract: Quantum systems with finite Hilbert space are studied. In d-dimensional Hilbert space, the marginal 

properties of displacement operators when d  Z are studied. An analytic representation of finite quantum systems, 

based on d
2
 coherent states is considered. The entropic uncertainty relations for this set of coherent states are also 

considered. 
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I. INTRODUCTION 

 

There is a lot of work in d-dimensional Hibert space [1-8] where the phase space is (d) ×  (d). Quantum systems in this 

phase-space are studied. In this paper we develop the formalism when d is an integer number [9]. In quantum 

mechanics the concept of the analytic functions [10-14] are studied. After the Bargmann [15-19] work in the harmonic 

oscillator, the analytic representations have been used in quantum systems. Additionally, there are other analytic 

representations in quantum mechanics such as analytic representations in the extended complex plane, analytic 

representation in the unit disc. We define an analytic representation [20-24] in terms of Jacobi Theta functions [25–27] 

and it is defined in the cell S. The number of the zeros of this function is equal to d and the zeros defined the quantum 

state uniquely. The d zeros of the analytic function are used in order to describe the time evolution of these systems in 

terms of d paths in the torus [28]. 

 

 In this paper we study a different approach of finite quantum systems when d  . 

 We propose in Equation some new properties for the displacement operator when d  . 

 We propose in Equations1-30 an analytic representation of coherent states for quantum systems and we found 

some properties Proposition IV.1. 

 In section V we consider the entropic uncertainty relation.  

 

In section II we study some basic formalism in finite quantum systems in order to define the notation. In section III the 

analytic representation in d-dimensional Hilbert space is defined. In section IV we define an analytic representation for 

the coherent states. In section V we consider the entropic uncertainty relations for the d
2
 coherent states. 

 

II. FINITE QUANTUM SYSTEMS 

 

We consider a quantum system in d-dimensional Hilbert space H(d). Let |m‹x and |n>p (where m, n  (d)), be the 

position states and momentum states, respectively. With a finite Fourier transform we get the momentum basis. 
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In finite quantum systems the position and the momentum are integers modulo d. The displaced parity operator is 

defined as 

 

P(,)=D(,)P(,)[D (,)]† 

 

Properties of displacement operator when d    
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Proof. Multyplying both sides Equation (5a) by position states we get 

   †
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For Equation (5b) 
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and for the displaced parity operator 
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Proof, Multiplying both sides Equation (8a) by position states |m>x we get 
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The left side of Equation (9) is equal to |m>x. Therefore, 

 
x x

a
  x

1
P α,β m  

d
  (10) 

 

We can easily prove Equation (8b) by multypling |m>p on both sides.  

 

 

III. ANALYTIC REPRESENTATION IN FINITE QUANTUM SYSTEMS 

 

An arbitrary state |f > with the normalization condition is given by: 

m x
m

mf f  
2

m

m

1 f    (11) 

The analytic representation of an arbitrary state |f > is defined as [28-30]: 

d 1
1/4

m 3
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m i
F(z) z ;
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 f  (12) 

where Θ3 is the Theta function 

2
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n

(u, ) exp(i n i 2nu)




       (13) 

 

This analytic function is quasiperiodic with a period along the real and imaginary axes: 

F(z 2 d) F(z)       (14) 

Therefore F (z) is defined in a cell: 

 

S [0, 2 d)  [0, 2 d)       (15) 
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IV. ANALYTIC REPRESENTATION FOR COHERENT STATES IN FINITE QUANTUM SYSTEMS 

 

We assume that F (z) it’s an analytic representation of a fiducial state |f>, and we consider the analytic 

representation of D(α,β)|f>. The fiducial state should be a ‘generic vector’. The scalar product of two coherent 

states is given by  

 
*

m m

m

( , ) ( , ) w( m m)          D Df f f f  (16) 

The coherent states D(α, β)|f> can be represented by the following analytic functions: 

d 1
1/4

x 3

m 0

m i
(z; , ; ) m ( , ) z

d 2d d






  
        

 
F Df f  (17) 

 

The f is the fiducial state. They obey periodicity relations analogous to Equation (14): 

F(z+L;,;f)= F(z;,;f) 

F(z+L;,;f)= F(z;,;f)exp 2 d  

 

Proposition IV.1 

 

The relation between F(z; α, β; f ) of the coherent D(α, β)|f> with the fiducial vector F (z) is  

 

2 2 i 2d 2d
(z; , ; ) exp iz 2 z i

d d d

     
                  

F Ff  (19) 

Relation between the zeros ζk of the analytic representation F(z) of the fiducial state, and the zeros 

 

k k

2d 2d
( , ) i       

 
 (20) 

The P(z; α, β; f ) of the coherent state P (α, β)|f> is related to F(z) of the fiducial vector as follows: 
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We also prove that 
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Relation between analytic representation and X- and P-representation: 
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There is no analogous relation for the P representation since 2
−1

 does not exist.  

 

Proof 
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The proof of this item is based on the proof in the Appendix. This proof is similar with the proof of (1) that can be seen 

in the Appendix. The proof of this item is trivial. 

 

Comparing the first two items we can prove that:  

i ab
(z; ,2 ; ) exp(3 ) ( z; , 2 ; )

d


       P Ff f

 
(24) 

(4) Using Equation we get 
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The entropic uncertainty relation in a finite system [31,32] of an arbitrary state |f > is 

where Sx and Sp are described by: 

d 1
2 2

x m m

m 0

s log




  f f  
d 1 2 2
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m 0

s log




  f f

 

(27) 

 

We consider the following values of a fiducial vector, when d = 3 

 

f0=0.1890+0.1094i; f1=0.3821-0.0404i f2=0.4077-0.0588  (28) 

 

We can calculate the entropic uncertainties S
x and S

p using the fiducial vector (above) when d = 3 in the 

following matrix (the base e was used for the logarithms) (Table 1). 

 

 

Sx+Sp-ln(d) 

 

 



0 1 2 



0 0.1255 0.2824 0.40 

1 0.315 0.321 0.252 

2 0.11 0.3201 0.602 
Table 1. Fiducial vector to calculate base e. 

 

In the case of Glauber coherent states, the result must be equal to the minimum possible value. However, several 

generalized coherent states do not obey this property, as it happens here. 
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V. DISCUSSION 

 

We have considered quantum systems in finite Hilbert space. We have found some properties of displacement 

operators when d. 

 

We have studied the analytic representation of d
2
 coherent states for finite quantum systems, in proposition IV.1. We 

have also studied the entropic uncertainty relations for these coherent states of Equation (27). The main result in this 

paper is the proposition IV.1. 

 

In this paper we are using theta functions. This tool can be used in many subjects in quantum physics such as 

Heisenberg and Weyl groups, quantum theta functions and discrete Fourier transfrom. 

 

In conclusion, in this paper we represent d
2
 coherent states when d in terms of analytic functions using theta 

functions. Furthermore, we have developed the marginal properties of displacement operator when d is an integer. The 

results can be used for further studies of these systems.  
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