
 ISSN (Online) : 2319 - 8753

 ISSN (Print) : 2347 - 6710

 International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

 2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st&22ndMarch, Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1962

Analyzing and Organizing User Search

Histories Based On Query Logs

Abstract:Creating search histories is a difficult process in

the web and organizing the user search logs is rapidly

increasing in the field of data mining for finding the user

interestingness. Daily billions of queries can be passed to

the server for relevant information, most of the search

engines retrieves the information based on the query

similarity score or related links with respect to the given

query. This paper explains the problem of organizing a

user’s historical queries into groups in a dynamic and

automated fashion. This paper go beyond approaches that

rely on textual similarity or time thresholds, and propose a

more robust approach that leverages search query logs.

The Incremental algorithm is used as IAssociation rule

and ICover graph. This work experimentally study the

performance of different techniques, and showcase their

potential, especially when combined together.

Keywords - incremental algorithm, Iassociation rule,

Icover graph, query logs

I.INTRODUCTION

A key challenge for web search engines is improving

user satisfaction. Therefore, search engine companies

exert significant effort to develop means that correctly

“guess” what the real hidden intent behind a submitted

query is. In the latest years, web search engines have

started to provide users with query recommendations to

help them refine queries and to quickly satisfy their needs.

Query suggestions are generated according to a model

built on the basis of the knowledge extracted from query

logs. The model usually contains information on

relationships between queries that are used to generate

suggestions. Since the model is built on a previously

collected snapshot of a query stream, its effectiveness

decreases due to interest shifts. To reduce the effect of

aging, query recommendation models must be

periodically re-built or updated [3].

This paper proposes two novel incremental algorithms

that update their model continuously on the basis of each

new query processed. Designing an effective method to

update a recommendation model poses interesting

challenges due to:

i) Limited memory availability – queries are

potentially infinite, and should keep in memory only

those queries “really” useful for recommendation

purposes,

ii) Low response time – recommendations and updates

must be performed efficiently without degrading user

experience.

The two proposed algorithms use two different

approaches to generate recommendations. The first uses

association rules for generating recommendations, and it

is based on the static query suggestion algorithm, while

the second uses click-through data[13].

The new class of query recommender algorithms

proposed here “incrementally updating” query

recommender systems to point out that this kind of

systems update the model on which recommendations are

drawn without the need for rebuilding it from scratch.

There are multiple tests conducted on a large real-world

query log to evaluate the effects of continuous model

updates on the effectiveness and the efficiency of the

query recommendation process. Result assessment used

an evaluation methodology that measures the

effectiveness of query recommendation algorithms by

means of different metrics. Experiments show the

superiority of incrementally updating algorithms with

respect to their static counterparts. Moreover, the tests

conducted demonstrated that our solution to update the

model each time a new query is processed has a limited

impact on system response time.

G.Manoranjitham, M.Ramesh

PG Student, Dept. of Computer Science and Engineering, Kalaignar Karunanidhi Institute of

Technology, Coimbatore, India.

Assistant Professor Dept. of Computer Science and Engineering, Kalaignar Karunanidhi Institute of

 Technology, Coimbatore, India.

Analyzing and Organizing User Search Histories Based on Query Logs

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1963

The main contributions presented in this work are: i) a

novel class of query recommendation algorithms whose

models are continuously updated as user queries are

processed, ii) two new metrics to evaluate the quality of

the recommendations computed, iii) an analysis of the

effect of time on the quality and coverage of the

suggestions provided by the algorithms presented and by

their static counterparts.

II.RELATED WORK

In recent work, Jones and Klinkner [4] and Boldi et al.

[5] investigate the search-task identification problem.

More specifically, Jones and Klinkner [4] considered a

search session to consist of a number of tasks (missions),

and each task further consists of a number of subtasks

(goals). They trained a binary classifier with features

based on time, text, and query logs to determine whether

two queries belong to the same task. Boldi et al. [5]

employed similar features to construct a query flow graph,

where two queries linked by an edge were likely to be part

of the same search mission.

Our work differs from these prior works in the

following aspects. First, the query-log based features in

[4], [5] are extracted from co-occurrence statistics of

query pairs. This paper additionally consider query pairs

having common clicked URLs and this paper exploit both

co-occurrence and click information through a combined

query graph. Jones and Klinkner [4] will not be able to

break ties when an incoming query is considered relevant

to two existing query groups. Additionally, our approach

does not involve learning and thus does not require

manual labeling and retraining as more search data come

in; our Markov random walk approach essentially requires

maintaining an updated combined query graph. Finally,

our goal is to provide users with useful query groups on-

the-fly while respecting existing query groups. On the

other hand, search task identification is mostly done at

server side with goals such as personalization, query

suggestions [5], etc.

III.SEARCH GOALS AND MISSION

 Our goal is to automatically organize a user’s search

history into query groups, each containing one or more

related queries and their corresponding clicks. Each query

group corresponds to an atomic information need that

may require a small number of queries and clicks related

to the same search goal. For example, in the case of

navigational queries, a query group may involve as few as

one query and one click. For broader informational

queries, a query group may involve a few queries and

clicks.

DEFINITION 1. A query group is an ordered list of

queries 𝑞𝑖 , together with the corresponding set of clicked

URLs, 𝑐𝑙𝑘𝑖 of 𝑞𝑖 . A query group is denoted as 𝑠 =
 𝑞1 , 𝑐𝑙𝑘1 , . . , 𝑞𝑘 , 𝑐𝑙𝑘𝑘 .

A. Dynamic Query Grouping

To group query dynamically, this work first place the

current query and clicks into a singleton query group

𝑠𝑐 = 𝑞𝑐 ,𝑐𝑙𝑘𝑐 , and then compare it with each existing

query group 𝑠𝑖 within a user’s history. Determine if there

are existing query groups sufficiently relevant to 𝑠𝑐 . If so,

merge 𝑠𝑐 with the query group s having the highest

similarity 𝑇𝑚𝑎𝑥 above or equal to the threshold 𝑇𝑠𝑖𝑚 .

Otherwise keep 𝑠𝑐 as a new singleton query group and

insert it into S.

B. Calculation of Query Relevance

To ensure that each query group contains closely

related and relevant queries and clicks, it is important to

have a suitable relevance measure sim between the current

query singleton group 𝑠𝑐 and an existing query group

𝑠𝑖 ∈ 𝑆 [1]. There are a number of possible approaches to

determine the relevance between current query and

existing query.

𝑠𝑖𝑚𝑡𝑖𝑚𝑒 𝑠𝑐 , 𝑠𝑖 =
1

 𝑡𝑖𝑚𝑒 𝑞𝑐 − 𝑡𝑖𝑚𝑒(𝑞𝑖)

𝑠𝑖𝑚𝑗𝑎𝑐𝑐𝑎𝑟𝑑 𝑠𝑐 , 𝑠𝑖 =
 𝑤𝑜𝑟𝑑𝑠(𝑞𝑐) ∩ 𝑤𝑜𝑟𝑑𝑠(𝑞𝑖)

 𝑤𝑜𝑟𝑑𝑠(𝑞𝑐) ∪ 𝑤𝑜𝑟𝑑𝑠(𝑞𝑖)

𝑠𝑖𝑚𝑐𝑜𝑟 𝑠𝑐 , 𝑠𝑖 =
 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑(𝑞𝑐) ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑(𝑞𝑖)

 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑(𝑞𝑐) ∪ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑(𝑞𝑖)

𝑠𝑖𝑚𝐴𝑇𝑆𝑃 𝑠𝑐 , 𝑠𝑖 =
𝑓𝑟𝑒𝑞 𝑞𝑐 , 𝑞𝑖

𝑓𝑟𝑒𝑞 𝑞𝑐

IV.QUERY RELEVANCE USING SEARCH LOGS

To calculate the query relevance based on web search

logs, capture the two important properties of relevant

queries[6]:

1) queries that frequently appear together as

reformulations

2) queries that have induced the users to click on

similar set of pages.

A. Search Behavior

The IAssociation Rule represents the relationship

between a pair of queries that are likely reformulations of

each other. The ICover Graph, represents the relationship

between two queries that frequently lead to clicks on

similar URLs. The query grouping merges the

information from IAssociation rule and ICover graph. The

above three methods are defined over the same set of

vertices 𝑉𝑄 , consisting of queries which appear in at least

one of the graphs, but their edges are defined differently.

V.INCREMENTAL ALGORITHM

Incremental algorithms are radically different from

static methods for the way they build and use

recommendation models. While static algorithms need an

off-line pre-processing phase to build the model from

Analyzing and Organizing User Search Histories Based on Query Logs

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1964

scratch every time an update of the knowledge base is

needed, incremental algorithms consist of a single online

module integrating the two functionalities:

i) updating the model.

ii) providing suggestions for each query.

Starting from the two algorithms presented above,

design two new query recommender methods

continuously updating their models as queries are issued.

Below algorithms formalize the structure of the two

proposed incremental algorithms that are detailed in the

following. The two incremental algorithms differ from

their static counterparts by the way in which they manage

and use data to build the model. Both algorithms exploit

LRU caches and Hash tables to store and retrieve

efficiently queries and links during the model update

phase[13].

Our two incremental algorithms are inspired by the

Data Stream Model in which streams of queries are

processed by a database system. Queries consist

modifications of values associated with a set of data.

When the dataset fits completely in memory, satisfying

queries is straightforward. Turns out that the entire set of

data cannot be contained in memory. Therefore, an

algorithm in the data stream model must decide, at each

time step, which subset of the set of data is worthwhile to

maintain in memory. The goal is to attain an

approximation

of the results we would have had in the case of the non-

streaming model. Make a first step towards a data stream

model algorithmic framework aimed at building query

recommendations.

The two algorithms considered use different

approaches for generating recommendations. The first

uses association rules while the second exploits click-

through data.

Below Fig.1 explains entire work of this paper. User

first enters the query for getting efficient results. The

search engine compares the entered query with existing

query log. If it is existed in the query log, the search

engine applies incremental algorithm for that entry and

provides results to user. The incremental algorithm

includes IAssociation rule and ICover graph.

Figure 1. Architectural Diagram

A. IAssociation Rules

Algorithm1 specifies the operations performed by

IAssociationRules, the incremental version of

AssociationRules.

Algorithm 1. IAssociationRules

1: loop

2: (u, q) ← GetNextQuery() {Get the query q and

the user u who submitted it}

3: ComputeSuggestions (q, σ) {Compute

suggestions forquery q over σ}

4: if ∃ LastQuery (u) then

5: q’ ← LastQuery (u)

6: LastQuery (u) ← q {Update the last query

submitted by u.}

7: if ∃σq ′,q then

8: ++σq ′,q {Increment Support for

q’⟹ q}

9: else

10: LRUInsert (σ, (q’, q)) {Insert an entry

for (q’, q) in σ. If σ is full, remove an entry

according to an LRU policy.}

11: end if

12: else

13: LRUInsert (u, q, LastQuery) {Insert an

entry for (u, q) in LastQuery. If LastQuery is full,

 remove an entry according to an LRU

policy.}

14: end if

15: end loop

 The data structures storing the model are updated at

each iteration. This work uses the LastQuery auxiliary

data structure to record the last query submitted by u.

User
Input

Query

Query

Logs

Incremental

Algorithm

Result Query

grouping

IAssociation

Rule
ICover Graph

Analyzing and Organizing User Search Histories Based on Query Logs

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1965

Since the model and the size of LastQuery could grow

indefinitely, whenever they are full, the LRUInsert

function is performed to keep in both structures only the

most recently used entries.

 Claim. Keeping up-to-date the AssociationRule-based

model is O (1).

 The proof of the claim is straightforward. The loop at

line 3 of Algorithm 1 is made up of constant-cost

operations. LRUInsert has been introduced to maintain

the most recently submitted queries in the model[7].

B. ICover Graph

The incremental version of CoverGraph adopts a

solution similar to that used by IAssociationRules. It uses

a combination of LRU structures and associative arrays to

incrementally update the (LRU managed) structure σ.

Algorithm 2 shows the description of the algorithm.The

hash table queryHasAClickOn is used to retrieve the list

of queries having c among their clicked URLs. This data

structure is stored in a fixed amount of memory, and

whenever its size exceeds the allocated capacity, an entry

is removed on the basis of a LRU policy (this justifies the

conditional statement at line 6)[13].

Claim. Keeping up-to-dated a CoverGraph-based

model is O(1).

Actually, the cost depends on the degree of each

query/node in the cover graph.

i. the degree of nodes in the cover graph follows a

power-law distribution

ii. the maximal number of URLs between two

queries/nodes is constant, on average. The

number of iterations needed in the loop at line 11

can be thus considered constant.

From the above methods, it is clear that to effectively

produce recommendations; a continuous updating

algorithm should have the following characteristics:

 The algorithm must cope with an undefined

number of queries. LRU caches can be used to

allow the algorithm to effectively keep in

memory only the most relevant items for which it

is important to produce recommendations.

 The lookup structures used to generate

suggestions and maintain the models must be

efficient, possibly constant in time. Random-

walks on graph-based structures, or distance

functions based on comparing portions of texts,

etc., are not suitable for our purpose.

 A modification of an item in the model must not

involve a modification of the entire model.

Otherwise, update operations take too much time

and jeopardize the efficiency of the method.

Algorithm 2. ICoverGraph

1: Input: A threshold τ .

2: loop

3: (u, q) ← GetNextQuery() {Get the query q and the

user u who submitted it.}

4: ComputeSuggestions (q, σ) {Compute suggestions

for query q over σ.}

5: c = GetClicks (u, q)

6: if ∃ queryHasAClickOn(c) then

7: queryHasAClickOn (c) ← q

8: else

9: LRUInsert (queryHasAClickOn, c)

10: end if

11: for all q’ ≠ q ∈ queryHasAClickOn(c) s.t. W((q,

q)) > τ do

12: if w > τ then

13: if ∃𝜎𝑞 ,𝑞′ then

14: 𝜎𝑞 ,𝑞 ′ = w

15: else

16: LRUInsert (σ, (q’, q),w)

17: end if

18: end if

19: end for

20: end loop

VI.QUERY RELEVANCE CALCULATION

For a given query q, compute a relevance vector, where

each query corresponds to the relevance value of each

query 𝑞𝑗 ∈ 𝑉𝑄to q. The edges in result query graph

correspond to pairs of relevant queries extracted from the

query logs and the click logs.

Let us consider a vector 𝑟𝑞 , where each entry, 𝑟𝑞(𝑞𝑗), is

𝑤𝑓(𝑞, 𝑞𝑗) if there exists an edge from q to 𝑞𝑗 in and 0

otherwise. One straightforward approach for computing

the relevance of 𝑞𝑗 to q is to use this 𝑟𝑞(𝑞𝑗) value.

However, although this may work well in some cases, it

will fail to capture relevant queries that are not directly

connected in result query graph (and thus 𝑟𝑞 𝑞𝑗 = 0).

Therefore, for a given query q, suggest a more generic

approach of obtaining query relevance by defining a

Markov chain for q, 𝑀𝐶𝑞 , over the given graph, result

query graph, and computing the stationary distribution of

the chain. This paper refer to this stationary distribution as

the fusion relevance vector of q, 𝑟𝑒𝑙𝑞
𝐹 , and use it as a

measure of query relevance.

The stationary probability distribution of 𝑀𝐶𝑞 can be

estimated using the matrix multiplication method, where

the matrix corresponding to 𝑀𝐶𝑞 is multiplied by itself

iteratively until the resulting matrix reaches a fix point.

However, given our setting of having thousands of users

issuing queries and clicks in real time and the huge size of

result query group, it is infeasible to perform the

expensive matrix multiplication to compute the stationary

distribution whenever a new query comes in. Instead, pick

the most efficient Monte Carlo random walk simulation

method among the ones presented in [15], and use it on

result query group to approximate the stationary

distribution for q.

Algorithm 3. Query Relevance Calculation

 Relevance(q)

Input

1: the result query group (combined)

Analyzing and Organizing User Search Histories Based on Query Logs

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1966

2: the jump vector, g

3: the damping factor, d

4: the total number of random walks, numRWs

5: the size of neighbourhood, maxHops

6: the given query, q

Output: the fusion relevance vector for q, 𝑟𝑒𝑙𝑞
𝐹

1: Initialize 𝑟𝑒𝑙𝑞
𝐹 = 0

2: num Walks=0; numVisits=0

3: While numWalks < numRWs

4: numHops=0; v=q

5: while 𝑣 ≠ 𝑁𝑈𝐿𝐿 ∧ 𝑛𝑢𝑚𝐻𝑜𝑝𝑠 < 𝑚𝑎𝑥𝐻𝑜𝑝𝑠

6: numHops++

7: 𝑟𝑒𝑙𝑞
𝐹(v)++; numVisits++

8: v=SelectNextNodeToVisit(v)

9: numWalks++

10: For each v, normalize 𝑟𝑒𝑙𝑞
𝐹(𝑣) = 𝑟𝑒𝑙𝑞

𝐹(𝑣)/

𝑛𝑢𝑚𝑉𝑖𝑠𝑖𝑡𝑠

The algorithm 3. computes the fusion relevance vector

of a given query q, 𝑟𝑒𝑙𝑞
𝐹 . It requires the following inputs

in addition to result query group. First, introduce a jump

vector of q, 𝑔𝑝 , that specifies the probability that a query

is selected as a starting point of a random walk. Since set

𝑔𝑝(𝑞′) to 1 if q’=q, and 0 otherwise, q will always be

selected; the next section will generalize 𝑔𝑝 to have

multiple starting points by considering both q and the

clicks for q. A damping factor, 𝑑 ∈ [0,1] (similar to the

original Page Rank algorithm [16]), determines the

probability of random walk restart at each node.

Two additional inputs control the accuracy and the time

budget of the random walk simulation: the total number

of random walks, numRWs, and the size of neighborhood

explored, maxHops. As numRWs increases, the

approximation accuracy of the fusion relevance vector

improves by the law of large numbers. This work limit the

length of each random walk to maxHops, assuming that a

transition from q to q’ is very unlikely if no user in the

search logs followed q by q’ in less than maxHops

number of intermediate queries. In practice, we typically

use numRWs=1,000,000 and maxHops =5, but reduce the

number of random walk samples or the lengths of random

walks by decreasing both parameters for a faster

computation of 𝑟𝑒𝑙𝑞
𝐹 [10].

The random walk simulation then proceeds as follows:

use the jump vector 𝑔𝑝 to pick the random walk starting

point. At each node v, for a given damping factor d, the

random walk either continues by following one of the

outgoing edges of v with a probability of d, or stops and

restarts at one of the starting points in 𝑔𝑝 with a

probability of (1-d). Then, each outgoing edge, (v, 𝑞𝑖), is

selected with probability 𝑤𝑓(𝑣, 𝑞𝑖), and the random walk

always restarts if v has no outgoing edge. The selection of

the next node to visit based on the outgoing edges of the

current node v in result query graph and the damping

factor d is performed by the SelectNextNodeToVisit

process in Step (8) of the algorithm, which is illustrated in

Algorithm 4. Notice that each random walk simulation is

independent of another, so can be parallelized.

Algorithm 4. SelectNextNodeToVist(v)

Input:

 1: the query fusion graph, combined query

 2: the jump vector, g

 3: the damping factor, d

 4: the current node, v

Output:

 1: if random() < d

 2: 𝑉 = 𝑞𝑖|(𝑣, 𝑞𝑖) ∈ 𝜀𝑄𝐹

 3: pick a node 𝑞𝑖 ∈ 𝑉 with probability

 𝑤𝑓(𝑣, 𝑞𝑖)

 4: else

 5: 𝑉 = {𝑞𝑖|𝑔 𝑞𝑖 > 0}

 6: pick a node 𝑞𝑖 ∈ 𝑉 with probability 𝑔 𝑞𝑖

 7: return 𝑞𝑖

After simulating numRWs random walks on the result

query group starting from the node corresponding to the

given query q, normalize the number of visits of each

node by the number of all the visits, finally obtaining 𝑟𝑒𝑙𝑞
𝐹

, the fusion relevance vector of q. Each entry of the

vector, 𝑟𝑒𝑙𝑞
𝐹(𝑞′), corresponds to the fusion relevance

score of a query 𝑞′ ∈ 𝑉𝑄 to the given query q. It is the

probability that q’ node is visited along a random walk

originated from q node over the result query group.

Lastly, this work show that there exists a unique fusion

relevance vector of a given query q, 𝑟𝑒𝑙𝑞
𝐹 . It is well known

that for a finite ergodic Markov chain, there exists a

unique stationary distribution. In fact, the random walk

simulation algorithm described in algorithm 3

approximates 𝑟𝑒𝑙𝑞
𝐹 that corresponds to the stationary

distribution of the Markov chain for q, 𝑀𝐶𝑞 [2].

VII.QUERY GROUPING

For each query, maintain a query image, which

represents the relevance of other queries to this query. For

each query group, maintain a context vector, which

aggregates the images of its member queries to form an

overall representation. This paper then propose a

similarity function 𝑠𝑖𝑚𝑟𝑒𝑙 for two query groups based on

these concepts of context vectors and query images.

Context Vector: For each query group, maintain a

context vector which is used to compute the similarity

between the query group and the user’s latest singleton

query group. The context vector for a query group s,

denoted 𝑐𝑥𝑡𝑠, contains the relevance scores of each query

in 𝑉𝑄 to the query group s, and is obtained by aggregating

the fusion relevance vectors of the queries and clicks in s.

If s is a singleton query group containing only
 𝑞𝑠1 , 𝑐𝑙𝑘𝑠1 , it is defined as the fusion relevance vector

𝑟𝑒𝑙(𝑞𝑠1 ,𝑐𝑙𝑘𝑠1). For a query group

𝑠 = 𝑞𝑠1 , 𝑐𝑙𝑘𝑠1 , . . . , 𝑞𝑠𝑘 , 𝑐𝑙𝑘𝑠𝑘 with k > 1, there are a

number of different ways to define 𝑐𝑥𝑡𝑠. For instance,

define it as the fusion relevance vector of the most

recently added query and clicks, 𝑟𝑒𝑙(𝑞𝑠1 ,𝑐𝑙𝑘 𝑠1). Other

Analyzing and Organizing User Search Histories Based on Query Logs

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1967

possibilities include the average or the weighted sum of

all the fusion relevance vectors of the queries and clicks

in the query group.

Query Image: The image of q, denoted 𝑰(𝑞) that

expresses q as the set of queries in 𝑉𝑄 that are considered

highly relevant to q. Generate 𝑰(𝑞) by including every

query 𝑞′ whose relevance value to q, 𝑟𝑒𝑙𝑞(𝑞′), is within

top-X percentage. To do this, sort the queries by

relevance, and find the cutoff such that the sum of the

relevance values of the most relevant queries accounts for

X% of the total probability mass.

Online Query Grouping. The similarity metric that

operates on the images of a query and a query group.

Some applications such as query suggestion may be

facilitated by fast on-the-fly grouping of user queries. For

such applications, avoid performing the random walk

computation of fusion relevance vector for every new

query in real time, and instead precompute and cache

these vectors for some queries in our graph. This works

especially well for the popular queries. In this case,

essentially trading-off disk storage for runtime

performance. Estimate that to cache the fusion relevance

vectors of 100 million queries, require disk storage space

in the hundreds of gigabytes. This additional storage

space is insignificant relative to the overall storage

requirement of a search engine. Meanwhile, retrieval of

fusion relevance vectors from the cache can be done in

milliseconds.

VIII.EXPERIMENTS

A. Experiments

This section provides study of behavior and

performance of our algorithms on partitioning a user’s

query history into one or more groups of related queries.

This work conducted experiments on a collection

consisting of the first 3,200,000 queries from the AOL

query log [14]. The AOL data-set contains about 20

million queries issued by about 650,000 different users,

submitted to the AOL search engine.

B. Results

Result obtained graphs of IAssociation rule and

ICover graph by merging a number of monthly search

logs from a commercial search engine. Each monthly

snapshot of the query log adds approximately 24 percent

new nodes and edges in the graph compared to the exactly

preceding monthly snapshot, while approximately 92

percent of the mass of the graph is obtained by merging

nine monthly snapshots.

To reduce the effect of noise and outliers, pruned the

IAssociation rule graph by keeping only query pairs that

appeared at least two times and the ICover graph by

keeping only queryclick edges that had at least 10 clicks.

Based on these two graphs, constructed the combined

graph. In order to create test cases for our algorithms,

used the search activity (comprising at least two queries)

of a set of 200 users (henceforth called the Rand200 data

set) from our search log. To generate this set, users were

picked randomly from our logs, and two human labelers

examined their queries and assigned them to either an

existing group or a new group if the labelers deemed that

no related group was present.

A user’s queries were included in the Rand200 data set

if both labelers were in agreement in order to reduce bias

and subjectivity while grouping. The labelers were

allowed access to the web in order to determine if two

seemingly distant queries were actually related. The

average number of groups in the data set was 3.84 with 30

percent of the users having queries grouped in more than

three groups. To measure the quality of the output

groupings, for each user, start by computing query pairs

in the labeled and output groupings. Two queries form a

pair if they belong to the same group, with lone queries

pairing with a special “null” query.

Figure 2: varying mix of query and click graph

The result is shown in Fig. 2; the horizontal axis

represents 𝛼 (i.e., how much weight we give to the query

edges coming from the query reformulation graph), while

the vertical axis shows the performance of our algorithm.

From the graph, our algorithm performs best when 𝛼 is

around 0.7, with the two extremes (only edges from

clicks, i.e., 𝛼 = 0.0 or only edges from reformulations,

i.e., 𝛼 = 1.0) performing lower. It is interesting to note

that, based on the shape of the graph, edges coming from

query reformulations are deemed to be slightly more

helpful compared to edges from clicks. This is because

there are 17 percent fewer click-based edges than

reformulation-based edges, which means that random

walks performed on the query reformulation graph can

identify richer query images.

IX.CONCLUSION

This paper studied the effects of incremental

model updates on the effectiveness of two query

suggestion algorithms. As the interests of search-engine

users change over time and new topics become popular,

the knowledge extracted from historical usage data can

suffer an aging effect. Consequently, the models used for

recommendations may rapidly become unable to generate

high-quality and interesting suggestions. This work

introduced a new class of query recommender algorithms

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.2 0.4 0.6 0.8 1

Series 1

α

Analyzing and Organizing User Search Histories Based on Query Logs

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1968

that update “incrementally” the model on which

recommendations are drawn. Starting from two state-of-

the-art algorithms, designed two new query recommender

systems that continuously update their models as queries

are issued. The two incremental algorithms differ from

their static counterparts by the way in which they manage

and use data to build the model. In addition, proposed an

automatic evaluation mechanism based on two new

metrics to assess the effectiveness of query

recommendation algorithms.

REFERENCES

[1] H.Hwang, W.Lauw, Lise Getoor and A.Ntowas, Organizing User

Search Histories, IEEE Transaction Vol.24, No.5, May 2012.

[2] J. Teevan, E. Adar, R. Jones, and M.A.S. Potts, “Information Re-

Retrieval: Repeat Queries in Yahoo’s Logs,” Proc. 30th Ann. Int’l

ACM SIGIR Conf. Research and Development in Information
Retrieval (SIGIR ’07), pp. 151-158, 2007.

[3] A. Broder, “A Taxonomy of Web Search,” SIGIR Forum, vol.

36, no. 2, pp. 3-10, 2002.
[4] A. Spink, M. Park, B.J. Jansen, and J. Pedersen, “Multitasking

during Web Search Sessions,” Information Processing and

Management, vol. 42, no. 1, pp. 264-275, 2006.
[5] R. Jones and K.L. Klinkner, “Beyond the Session Timeout:

Automatic Hierarchical Segmentation of Search Topics in Query

Logs,” Proc. 17th ACM Conf. Information and Knowledge
Management (CIKM), 2008.

[6] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and S.

Vigna, “The Query-Flow Graph: Model and Applications,” Proc.
17th ACM Conf. Information and Knowledge Management

(CIKM), 2008.

[7] D. Beeferman and A. Berger, “Agglomerative Clustering of a
Search Engine Query Log,” Proc. Sixth ACM SIGKDD Int’l

Conf. Knowledge Discovery and Data Mining (KDD), 2000.
[8] R. Baeza-Yates and A. Tiberi, “Extracting Semantic Relations

from Query Logs,” Proc. 13th ACM SIGKDD Int’l Conf.

Knowledge Discovery and Data Mining (KDD), 2007.
[9] J. Han and M. Kamber, Data Mining: Concepts and Techniques.

Morgan Kaufmann, 2000.

[10] W. Barbakh and C. Fyfe, “Online Clustering Algorithms,” Int’l J.
Neural Systems, vol. 18, no. 3, pp. 185-194, 2008.

[11] Lecture Notes in Data Mining, M. Berry, and M. Browne, eds.

World Scientific Publishing Company, 2006.
[12] V.I. Levenshtein, “Binary Codes Capable of Correcting

Deletions, Insertions and Reversals,” Soviet Physics Doklady,

vol. 10, pp. 707- 710, 1966.
[13] D.Broccolo, O.Frieder, F.Maria Nardini, R.Perego and F.Silvestri,

“Incremental Algorithms for Effective and Efficient Query

Recommendations” Springer Trans SPIRE 2010.
[14] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang, “Query Clustering Using

User Logs,” ACM Trans. in Information Systems, vol. 20, no. 1,

pp. 59-81, 2002.
[15] A. Fuxman, P. Tsaparas, K. Achan, and R. Agrawal, “Using the

Wisdom of the Crowds for Keyword Generation,” Proc. the 17th

Int’l Conf. World Wide Web (WWW ’08), 2008.

