

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 2, February 2014

Copyright to IJIRCCE www.ijircce.com 2883

Analyzing Complexities in Developing Software

 Dr.A.Muthu Kumaravel
Dept. of MCA, Bharath University, Chennai-600073, India

ABSTRACT: Developing a software project is very complex process. There are many issues which occur
during software development. Some major or frequently occurred problem is requirements written
inadequately, impractical schedules, insufficient testing, and enhancing after development is underway
and poor communication. Among these issues one of the notable issues in project development is developer
selecting unsuitable programming language which badly affects on project development. This paper discusses
what are the entire factors play important role for complexity of a programming language and gives guideline
for the developer in choosing a proper programming language as decisive factors for project development.

KEYWORDS: Complexity, Programming Language, Software Development.

I. SELECTION OF PROGRAMMING LANGUAGE

Selection of a particular language should be made based on overall goals of the project. Before
starting an important project, it would be important to create several independent testing code
programs in various languages. This will describe which one will be best for your task and that will go
to save the time over selecting a particular language without unnecessary headache. Another approach
is to divide project into separate modules or small projects with different languages for each module
and selecting the one which may be best suited for the project. Some programming languages need
high end configurations whereas other needs common configurations, it is very important to consider
the user’s machine configuration while selecting language. For selection of particular language, the
developer needs to consider the platform dependency, employees who know about the language,
popularity of the language, and unanimity of the project team about language. The selected language
must be easily understandable by user as well as the developer. It is expected to select the language
which can contribute to save time, money, efforts and suitability in project.

II. WHAT IS COMPLEXITY?

The first problem encountered when attempting to understand program complexity is to define
what it means for a program to be complex. Basili defines complexity as a measure of the resources
expended by a system while interacting with a piece of software to perform a given task [1]. If the
interacting system is a computer, then complexity is defined by the execution time and storage required
to perform the computation. If the interacting system is a programmer, then complexity is defined by
the difficulty of performing tasks such as coding, debugging, testing, or modifying the software. The

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 2, February 2014

Copyright to IJIRCCE www.ijircce.com 2884

term software complexity is often applied to the interaction between a program and a programmer
working on some programming task.

Usually these measures are based on program code disregarding comments and stylistic attributes
such as indentation and naming conventions. Measures typically depend on program size, control
structure, or the nature of module interfaces. The most widely known measures are those devised by
Halstead and his colleagues that are collectively known as software science [2].

The Halstead measures are functions of the number of operators and operands in the program. The
major components of software science are
n1, the number of unique operators,
n2, the number of unique operands,
N1, the total number of operators,
N2, the total number of operands.

Halstead defined the volume, V, of a program to be
V = (N1 + N2) log2 (n1 + n2)

and program difficulty, D, to be
D = (n1 X N2) / 2n2

Halstead derived a number of other measures. The most extensively studied of these is an estimate
of the effort, E, required implementing a program:
E = D X V

III. THE PROPERTIES OF SOFTWARE COMPLEXITY MEASURES
Several properties of measures determine the way in which the measure can be used.

A. strength

If software complexity measures are to be used to evaluate programs, then it is important to
consider the measure’s responsiveness to program modifications. Not only should the measure be
shown to reliably predict the complexity of the software, but programming techniques that minimize
the measure should be examined to assure that reductions in the measure consistently produce
improvements in the program. In particular, it should not be possible to reduce the measure through
incidental modifications of the program. Also, programming techniques that modify the program in a
desirable way with respect to one property must not produce an undesirable change in another property
as a side effect. A robust measure of software complexity is sensitive to the underlying complexity of
the program and cannot be misdirected by incidental modifications to the program.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 2, February 2014

Copyright to IJIRCCE www.ijircce.com 2885

Several authors have examined the relationship between complexity measures and commonly
accepted axioms for good programming [3, 4, 5, 6]. Their strategy has been to study how complexity
measures are affected by following maxims of good programming style. Halstead’s E, the cyclomatic
number, and the number of lines have been examined for their responsiveness to modularization, the
use of temporary variables, initialization procedures, and such. The results of these analyses do not
provide strong support for these measures. For some classes of programs, some measures are reduced
by some good programming practices.

B. Normativeness

The interpretation of complexity measurements is facilitated if the metric provides a norm against
which measurements can be compared. Without such a standard, it is meaningless to apply the metric
to programs in isolation. To judge whether or not a program is overly complex, a norm that identifies
some acceptable level of complexity must be specified.

C. Specificity

Software complexity analysis may provide an review tool that can be used during program
development and testing. Designers and programmers could use the measure to find insufficiency in
program construction. A complexity measure might also be used as a guide for testing and
maintenance efforts. The degree to which a measure is able to perform these functions will depend on
how well it specifies what its contribution to the complexity of a program.

D. Prescriptiveness

If software complexity measures are to prove useful in the restraint of program complexity, then
they must not only index the level of a program’s complexity, but also should suggest methods to
reduce the amount of complexity. A measure could prescribe techniques to avoid excess complexity as
well as direct modification of overly complex programs already written.

IV. TASK COMPLEXITY

A. Task Size

We measured task size as the number of thousands of lines of software instructions. As the
software product was written in one programming language, lines of code provide a reasonable
measure of software size. Naturally, we expect that more software instructions will take longer to
develop.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 2, February 2014

Copyright to IJIRCCE www.ijircce.com 2886

B. Structural Complexity

Structural complexity can be evaluated by measuring characteristics that make programming
language difficult to understand and change [7]. As the number of modules affected increases, it
becomes more difficult to understand how the parts being modified will affect other parts of the system
which increases the amount of information that developers need to process to implement

V. MAJOR CAUSES OF PROJECT FAILURE

Project development in the IT service industry is the crucial factor because the whole IT industry
profit depends upon the project’s success. Figure 1 shows major causes of IT project failure, in which
29% of IT project fail due the inadequate coordination of resources in the project where programming
language and database management system is one the major resources in the project. While discussing
the project development some issues need to be sorted out in the early stages because IT project’s time
duration is very long and hence if we do not settle the issues early in the development stage then it
become unavoidable.

 0 10 20 30 40 50

Bad Communication

Lack of Scheduling

No Quality Control

Milestones Not Met

Inadequate Resources

Cost Getting Out of Hand

Mismanagement

Inefficient Output

Supplier People Not Consistent

Figure 1 Major Causes of Project Failure

V. TESTING

Once a measure has been developed, it must be tested to be sure it actually measures what it
purports to measure.

A. Experimental Design

Researchers attempting to validate measures of software complexity face a methodological morass.
An enormous number of parameters may influence the outcome of an experiment. Subject selection,
programming language, programming task, and the algorithms implemented can all profoundly affect

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer
and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

 Vol. 2, Issue 2, February 2014

Copyright to IJIRCCE www.ijircce.com 2887

both the nature of the results and the extent to which experimental observations will generalize to a
larger set of programming environments. The problem is compounded by the uncertainty of how these
parameters interact to determine programmer behavior. Worse yet, there are not even good methods to
quantify parameters such as programmer ability and problem difficulty.

Once the programming environment is specified, the experimenter must devise a method to
manipulate the independent variable-typically some program property. If research is conducted as a
natural experiment (observing actual programs produced in a real work setting), then the problem is to
find programs that differ only in the variables of interest. The difficulty of obtaining uncontrived
programs that vary only in one or two dimensions should not be underestimated.

VI. CONCLUSION

The primary goal of the software developer is to develop a project which satisfies user’s need as

well as the project will complete within time deadline. If the selection of programming language fail at
initial stage in the project, then developer team need to go to basics and start the work again. It is
wastage of resources for the organization. This paper provides guidelines for choosing a programming
language for project development. If the developer working with unsuitable programming language
then project will definitely not function properly and due to which the user is not satisfied with project.
Complexity measures currently available provide only a crude index of software complexity.
Advancements are likely to come slowly as programming behavior becomes better understood. Users
of complexity measures must be aware of the limitations of these measures and approach their
applications cautiously. Before a measure is incorporated into a programming environment, the user
should be sure that the measure is appropriate for the task at hand. The measure must possess the
properties demanded by the use. Finally, users should always view complexity measurements with a
critical eye.

REFERENCES
1 Basili, V.R. Qualitative software complexity models: A summary. In Tutorial on Models and Methods for Software

Management and Engineering. IEEE Computer Society Press, Los Alamitos, Calif., 1980.
2 Halstead, M.H. Elements of Software Science. Elsevier North-Holland, New York, 1977.
3 Baker, A.L. The use of software science in evaluating modularity concepts. IEEE Trans. Softw. Eng. SE-S, 2 (Mar.

1979), 110-120.
4 Baker, A.L., and Zweben, S.H. A comparison of measures of control flow complexity. IEEE Trans. Softw. Eng. SE-6,6

(Nov. 1980). 506-512.
5 Evangelist, W.M. Software complexity metric sensitivity to program structuring rules. I. Syst. Softw. 3, 3 (Sept. 1983),

231-243.
6 Gordon, R.D. Measuring improvements in program clarity. IEEE Trans. Softw. Eng. SE-5, 2 (Mar. 1979), 79-90.
7 Curtis, B., S. B. Sheppard, P. Milliman, M. A. Borst, T. Love. 1979. Measuring the psychological complexity of

software maintenance tasks with the Halstead and Mccabe metrics. IEEE Trans. Software Engrg. 5(2) 96–104.

