International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)
Vol. 2, I ssue 8, August 2014

Bayes' Approach on Government Job Selection Procedure In India

Sonu Rana ${ }^{1}$, Dr. ABHOY CHAND MONDAL ${ }^{2}$,
Assistant Professor, Department of CSE, Aryabhatta Institute of Engineering \& Management Durgapur Panagarh, Dist Burdwan, India

Associate Professor, Department of CSE, The University Of Burdwan, Dist-Burdwan, West Bengal, India

Abstract

In this paper, we have discussed Government Job Selection procedure in India through Bayes' theorem, or the related likelihood ratio, is the key to almost any procedure for extracting information from data. Bayes' Theorem lets us work backward from measured results to deduce what might have caused them. It will be the basis of most of our later model building and testing [17].

KEYWORDS: Bayes’ Theorem, Strength, Certainty, and Coverage Factor, Flow graph.

I . INDTRODUCTION OF BAYES' THEOREM

Bayes' Theorem, or the related likelihood ratio, is the key to almost any procedure for extracting information from data. Bayes' Theorem lets us work backward from measured results to deducewhat might have caused them. It will be the basis of most of our later model building and testing. It UCalgary (2003) is the work of Rev. Thomas Bayes (St.Andrews, 2003), about whom only a modest amount is known, but he has the perhaps unique distinction that twothirds of his publications were posthumous and the remaining third anonymous.
Every decision table describes decisions (actions, results etc.) determined, when some conditions are satisfied. In other words each row of the decision table specifies a decision rule which determines decisions in terms of conditions. In what follows we will describe decision rules more exactly.Let $S=(U, C, D)$ be a decision table. Every $x \in U$ determines a sequence $c_{1}(x), \ldots, c_{n}(x), d_{1}(x), \ldots, d_{m}(x)$ where $\left\{c_{1}, \ldots, c_{n}\right\}=C$ and $\left\{d_{1}, \ldots, d_{m}\right\}=D$. The sequence will be called a decision rule induced byx (in S) and denoted by $c_{1}(x), \ldots, c_{n}(x) \rightarrow d_{1}(x), \ldots, d_{m}(x)$ or in short $C \rightarrow_{x} D$.The number $\operatorname{supp}_{x}(C, D)=|C(x) \cap D(x)|$ will be called a support of the decision rule $C \rightarrow_{x} D$ and the number $\sigma_{x}(C, D)=\frac{\operatorname{supp}_{x}(C, D)}{|U|}$, will be referred to as the strength of the decision rule $C \rightarrow_{x} D$, where $|X|$ denotes the cardinality of X. With every decision rule $C \rightarrow_{x} D$ we associate the certainty factor of the decision rule, denoted $\operatorname{cer}_{x}(C, D)$ and defined as follows: $\operatorname{cer}_{x}(C, D)=\frac{|C(x) \cap D(x)|}{|C(x)|}=\frac{\operatorname{supp}_{x}(C, D)}{|C(x)|}=\frac{\sigma_{x}(C, D)}{\pi(C(x))}$, where $\pi(C(x))=\frac{|C(x)|}{|U|}$. The certainty factor may be interpreted as a conditional probability that y belongs to $D(x)$ given y belongs to $C(x)$, symbolically $\pi_{x}(D \mid C)$. If $\operatorname{cer}_{x}(C, D)=1$, then $C \rightarrow_{x} D$ will be called a certain decision rule in S; if $0<\operatorname{cer}_{x}(C, D)<1$ the decision rule will be referred to as an uncertain decision rule in S.Besides, we will also use a coverage factor of the decision rule, denoted $\operatorname{cov}_{x}(C, D)$ defined as $\operatorname{cov}_{x}(C, D)=\frac{|C(x) \cap D(x)|}{|D(x)|}=\frac{\operatorname{supp}_{x}(C, D)}{|D(x)|}=\frac{\sigma_{x}(C, D)}{\pi(D(x))}$ where $\pi(D(x))=\frac{|D(x)|}{|U|}$. Similarly

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2014

$\operatorname{cov}_{x}(C, D)=\pi_{x}(C \mid D)$. We need also approximate equivalence of formulas which is defined as follows: $\Phi \equiv k \Psi$ if and only if $\operatorname{cer}(\Phi, \Psi)=\operatorname{cov}(\Phi, \Psi)=k$. Besides, we define also approximate equivalence of formulas with the accuracys $(0 \leq \varepsilon \leq 1)$, which is defined as follows: $\Phi \equiv k, \varepsilon \Psi$ if and only if $k=\min \{\operatorname{cer}(\Phi, \Psi), \operatorname{cov}(\Phi, \Psi)\}$ and $\mid \operatorname{cer}(\Phi, \Psi)-$ $\operatorname{cov}(\Phi, \Psi) \mid \leq \varepsilon .[12,13,14,15]$

II . RELATED WORK

In this article we will illustrate an idea which is based on Government job selection in India. Here, we have taken 1000 examination candidates ($\mathrm{X} 1, \mathrm{X} 2, \ldots ., \mathrm{X} 11$) who are preparing them for government job examination in India. For some government rules each candidate have to fulfil each condition or criteria for getting government job in India. These conditions are $\mathrm{K}=$ Knowledge/ Intelligence, $\mathrm{C}=\mathrm{Cast}, \mathrm{D}=$ Degree, $\mathrm{M}=$ Percentage of marks, $\mathrm{E}=$ exam Rank. If each criteria is satisfy then candidate will selected for government job. In Table one the value of each criteria based on $\mathrm{Md}=$ Medium, Gd= Good, Vgd= Verygood, ST= Schedule Tribe, SC= Schedule Cast, Gen= General, Hnd=Physical Handicap, OBC= Other Backward Cast, Passed and Fail.

Candidates	K	C	D	M	E	Decision	Support	Strength
X1	Md	ST	Md	Md	Pass	Selected	230	0.230
X2	Md	Gen	Md	Md	Fail	Rejected	110	0.110
X3	Gd	SC	Gd	Gd	Pass	Selected	50	0.050
X4	Gd	Gen	Gd	Gd	Fail	Rejected	60	0.060
X5	Vgd	Gen	Vgd	Vgd	Pass	Selected	96	0.096
X6	Md	Gen	Vgd	Gd	Fail	Rejected	90	0.090
X7	Vgd	Gen	Vgd	Vgd	Pass	Selected	70	0.070
X8	Vgd	ST/SC	Gd	Gd	Pass	Selected	80	0.080
X9	Md	Hnd	Gd	Gd	Pass	Selected	85	0.085
X10	Gd	OBC	Gd	Gd	Fail	Rejected	65	0.065
X11	Gd	OBC	Vgd	Vgd	Pass	Selected	64	0.064

Table 1: Decision Table Of Examination Candi dates.

III . DECISION ALGORITHM ASSOCIATED WITH RESPECT OF TABLE 1

X1) if ($\mathrm{k}=\mathrm{Md}, \mathrm{C}=\mathrm{ST}, \mathrm{D}=\mathrm{Md}, \mathrm{M}=\mathrm{Md}, \mathrm{E}=$ Pass) then (Decision is Selected)
X2) if ($k=M d, C=G e n, D=M d, M=M d, E=F a i l)$ then (Decision is Rejected)
X3) if ($\mathrm{k}=\mathrm{Gd}, \mathrm{C}=\mathrm{SC}, \mathrm{D}=\mathrm{Gd}, \mathrm{M}=, \mathrm{Gd}, \mathrm{E}=$ Pass) then (Decision is Selected)
X4) if ($\mathrm{k}=\mathrm{Md}, \mathrm{C}=\mathrm{Gen}, \mathrm{D}=\mathrm{Gd}, \mathrm{M}=\mathrm{Gd}, \mathrm{E}=$ Fail)then (Decision is Rejected)
X5) if ($\mathrm{k}=\mathrm{Vgd}$, $\mathrm{C}=\mathrm{Gen}, \mathrm{D}=\mathrm{Vgd}, \mathrm{M}=\mathrm{Vgd}, \mathrm{E}=$ Pass) then (Decision is Selected)
X6)if ($\mathrm{k}=\mathrm{Md}, \mathrm{C}=\mathrm{Gen}, \mathrm{D}=\mathrm{Vgd}, \mathrm{M}=\mathrm{Gd}, \mathrm{E}=$ Fail) then (Decision is Rejected)
X7)if ($k=V g d, C=G e n, M=V g d, E=P a s s)$ then (Decision is Selected)
X8) if ($\mathrm{k}=\mathrm{Vgd}, \mathrm{C}=\mathrm{ST} / \mathrm{SC}, \mathrm{E}=$ Pass) then (Decision is Selected)
X9)if ($\mathrm{k}=\mathrm{Md}, \mathrm{C}=$ Hnd, $\mathrm{E}=$ Pass) then (Decision is Selected)
X10)if ($\mathrm{k}=\mathrm{Gd}, \mathrm{C}=\mathrm{OBC}, \mathrm{D}=\mathrm{Gd}, \mathrm{M}=\mathrm{Gd}, \mathrm{E}=$ Fail) then (Decision is Rejected)
X11) if ($\mathrm{k}=\mathrm{Gd}, \mathrm{C}=\mathrm{OBC}, \mathrm{D}=\mathrm{Vgd}, \mathrm{M}=\mathrm{Vgd}, \mathrm{E}=$ Pass) then (Decision is Selected)

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2014

Candidates	Strength	Certainty
X 1	0.230	0.75
X 2	0.110	0.25
X 3	0.050	0.65
X 4	0.060	0.35
X 5	0.096	0.15
X 6	0.090	0.85
X 7	0.070	1.00
X 8	0.080	1.00
X 9	0.085	1.00
X 10	0.065	0.83
X 11	0.064	

Now Let Calculate The Inverse Decision Algorithm in below:
X1') if(Decision is Selected) then ($\mathrm{k}=\mathrm{Md}, \mathrm{C}=\mathrm{ST}, \mathrm{D}=\mathrm{Md}, \mathrm{M}=\mathrm{Md}, \mathrm{E}=$ Pass).
X2') if (Decision is Rejected) then ($k=M d, C=G e n, D=M d, M=M d, E=F a i l)$
X3') if (Decision is Selected) then($\mathrm{k}=\mathrm{Gd}, \mathrm{C}=\mathrm{SC}, \mathrm{D}=\mathrm{Gd}, \mathrm{M}=, \mathrm{Gd}, \mathrm{E}=$ Pass)
X4') if (Decision is Rejected) then ($\mathrm{k}=\mathrm{Md}, \mathrm{C}=\mathrm{Gen}, \mathrm{D}=\mathrm{Gd}, \mathrm{M}=\mathrm{Gd}, \mathrm{E}=\mathrm{Fail}$)
X5') $\mathrm{if}($ Decision is Selected) then ($\mathrm{k}=\mathrm{Vgd}, \mathrm{C}=\mathrm{Gen}, \mathrm{D}=\mathrm{Vgd}, \mathrm{M}=\mathrm{Vgd}, \mathrm{E}=\mathrm{Pass}$)
X6') if (Decision is Rejected) then ($\mathrm{k}=\mathrm{Md}, \mathrm{C}=\mathrm{Gen}, \mathrm{D}=\mathrm{Vgd}, \mathrm{M}=\mathrm{Gd}, \mathrm{E}=$ Fail)
X7') if(Decision is Selected) then ($k=V g d, C=G e n, ~ M=V g d, ~ E=P a s s) ~$
X8')if(Decision is Selected) then ($\mathrm{k}=\mathrm{Vgd}, \mathrm{C}=\mathrm{ST} / \mathrm{SC}, \mathrm{E}=\mathrm{Pass}$)
X9')if(Decision is Selected) then ($\mathrm{k}=\mathrm{Md}, \mathrm{C}=\mathrm{Hnd}, \mathrm{E}=$ Pass)
X10') if(Decision is Rejected) then ($\mathrm{k}=\mathrm{Gd}, \mathrm{C}=\mathrm{OBC}, \mathrm{D}=\mathrm{Gd}, \mathrm{M}=\mathrm{Gd}, \mathrm{E}=\mathrm{Fail}$)
X11') $\mathrm{if}($ Decision is Selected) then ($\mathrm{k}=\mathrm{Gd}, \mathrm{C}=\mathrm{OBC}, \mathrm{D}=\mathrm{Vgd}, \mathrm{M}=\mathrm{Vgd}, \mathrm{E}=$ Pass)

Candidates	Strength	Cover age
X 1	0.230	0.90
X 2	0.110	0.16
X 3	0.050	0.88
X 4	0.060	0.21
X 5	0.096	0.17
X 6	0.090	0.95
X 7	0.070	0.92
X 8	0.080	0.89
X 9	0.085	0.91
X 10	0.065	0.95
X 11	0.064	0.19

Table 3: Srength \& Coverage of Decision Tablel

International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2014

IV . ALL OVER STRENGTH, CERTAINTY AND COVERAGE FACTORS OF DECISION TABLE 1 IS:

Candidates	Strength	Certainty	Cover age
X 1	0.230	0.75	0.90
X2	0.110	0.25	0.16
X3	0.050	0.65	0.88
X4	0.060	0.35	0.21
X5	0.096	0.15	0.17
X6	0.090	0.85	0.95
X7	0.070	1.00	0.92
X8	0.080	1.00	0.89
X9	0.085	1.00	0.91
X10	0.065	0.83	0.95
X11	0.064	0.17	0.19

Table 4: Strength, Certainty and Coverage factor of Decision Table

V . FLOWGRAPH OF DECISION TABLE

Fig 1: Flow Graph Of Decision Table

VI . CONCLUSION

In this paper, from above discussion we can reach ultimate solution that for getting Government job in India some criteria are most important to qualify the examination test. With respect of some important criteria we got "X6, $\mathrm{X} 10, \mathrm{X} 7, \mathrm{X} 9$ " are eligible to clear the exam test but $\mathrm{X} 2, \mathrm{X} 5, \mathrm{X} 11, \mathrm{X} 4$ these candidates are not properly eligible to clear the exam for getting the job and those we are succeed to achieve the goal through Bayes' Theorem which actually expertism evolutionary method which help to reach actual decision.

REFERENCES

[^0]
International Journal of Innovative Research in Computer and Communication Engineering

(An ISO 3297: 2007 Certified Organization)

Vol. 2, Issue 8, August 2014

9. Pawlak, Z. and Skowron, A. Rough membership functions, in: Yager, R.R., Fedrizzi, M. and Kacprzyk, J., Eds., Advances in the Dempster-Shafer Theory of Evidence, John Wiley and Sons, New York, 251-271, 1994.
10.Slezak, D. Rough sets and Bayes factor, LNCS Transactions on Rough Sets III, LNCS 3400, 202-229, 2005.
10. G. E. P. Box, G. C. Tiao: Bayesian Inference in: Statistical Analysis, John Wiley and Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 1992
11. M. Berthold, D. J. Hand: Intelligent Data Analysis, an Introduction, Springer-Verlag, Berlin, eidelberg, New York, 1999
12. Z. Pawlak: Rough Sets and Decision Algorithms, in: W. Ziarko, Y. Y. Yao (eds.), Second International Conference, Rough Sets and Current Trends in Computing, RSCTC 2000, Banff, Canada, October 2000, LNAI 2000, 30-45
13. E. W. Adams: The Logic of Conditionals, an Application of Probability to Deductive Logic. D. Reidel Publishing Company, Dordrecht, Boston, 1975
14. T. Bayes: An essay toward solving a problem in the doctrine of chances, Phil. Trans. Roy. Soc., 53, 370-418; (1763); Reprint Biometrika 45, 296-315, 1958
15. J. M. Bernardo, A. F. M. Smith: Bayesian Theory, Wiley Series in Probability and Mathematical Statistics, John Wiley \& Sons, Chichester, New York, Brisbane, Toronto, Singapore, 1994.
16. Chilin Shih, Greg Kochanski, "Bayes' Theorem", September 15, 2006.

BIOGRAPHY

Ms. Sonu Rana, Assistant Professor of Aryabhatta Institute Of Engineering \&Management, Durgapur in Computer science and Engineering department. Received P.G degree from Dr.B.C.Roy Engineering college, Durgapur. Now pursuing Phd from Burdwan university under Dr. Abhoy Chand Mondal, Associate Professor of Burdwan University in CSE department. Interested research areas are Fuzzy, Ahp, Rough Set and Genetic Algorithm.

Dr. Abhoy Chand Mondal, He is an Associate Professor of Dept. of Computer Science, The University of Burdwan. He was born in 27/02/1964.He received his B.Sc.(Math-Hons.) degree from The University of Burdwan in 1987, M.Sc.(Math) and MCA from Jadavpur University in 1989 and 1992 respectively. He received his Ph.D. degree from Burdwan University in 2004.His research interest is in Soft Computing, Document Processing, Web Mining etc. He has 1 year industry experience and 168years of teaching and research experience. No. of papers published is 50 (No. of Journal papers 20).So far two students awarded Ph.D. degree under his guidance. Currently 8 students are undergoing their Ph.D. work under his supervision.

[^0]: 1 .Duda, R.O. and Hart, P.E. Pattern Classification and Scene Analysis, Wiley, NewYork, 1973.
 2. Good, I.J.,The Estimation of Probabilities: An Essay on Modern Bayesian Methods. M.I.T. Press. 1965.

 3 Greco, S., Matarazzo, B. and Slowinski, R. Parameterized rough set model using rough membership and Bayesian confirmation measures, International Journal of Approximate Reasoning, 49, 285-300, 2009.
 4 Herbert, J.P. and Yao, J.T. Game-theoretic risk analysis in decision-theoretic rough sets, Proceedings of RSKT'08, LNAI 5009, 132-139, 2008.
 5. Herbert, J.P. and Yao, J.T. Game-theoretic rough sets, Fundamental Informaticae, 2009.
 6.Pawlak, Z. Rough sets, International Journal of Computer and Information Sciences, 11, 341-356, 1982.
 7.Pawlak, Z. Rough Sets, Theoretical Aspects of Reasoning about Data, Dordrecht: Kluwer Academic Publishers, 1991.
 8.Pawlak, Z., Wong, S.K.M. and Ziarko, W. Rough sets: probabilistic versus deterministic approach, International Journal of Man-Machine Studies, 29, 81-95,1988.

