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INTRODUCTION
Discrete distributions are very important in modeling the real life plan. Many essays have been published on the study and 

applications of discrete distributions. Using these techniques, one can transform the continuous distributions into the discrete 
ones. Katz [1], Roknabadi, et al. [2], Krishna and Pundir [3] have introduced di erent methods for generating discrete families of 
distributions. The discrete Burr distribution with two parameters is one of them. If the parameters of this distribution are constant, 
then to estimate them, Maximum Likelihood and Moment Methods [4] are used, but supposing that the variables were random, 
then the Bayesian method should be used. In fact, one cannot be sure that the parameters of a distribution are constant values 
to specify them to prior distribution parameters and calculate their Bayesian estimate. In case they are not calculable through 
the usual methods of Bayesian estimator, the approximate methods such as numerical integration, Monte-Carlo and Laplace's 
approximation methods [5] will be used. This paper has used these methods to estimate the Bayesian discrete Burr distribution 
parameters. A lifetime random variable X follows the Burr-XII, or simple Burr, Br (α,β ) 1 if its probability density function is as 
follows:
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The second risk rate is
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The r's moment is
r -1 -1 E(X ) = B(r + 1, r ),   > 0,   > r > 0β α β − α α,β αβ

which 
1 1 1

0
B(a,b) = (1 ) .a bx x dx− −−∫

In special case, if α =1, Pareto distribution Par(β)2 with its reliability characteristics will be obtained. If times are grouped into 
unit intervals, the discrete observed variable dX = [X], the largest integer less than or equal to X, will have the probability function 
as follows:

(1)       P(dX = ) = p( )= P( X <  + 1) = S( ) -S(  + 1)x x x x x x≤

which x = 0, 1,2,…..

Krishna and Pundir [1] applied this method to study the discrete Burr and Pareto distributions. Using the equation (1), the 
probability mass function of discrete Burr distribution DBD (α,θ)3 can be dened as follows:

log(1+ ) log{1+(1+x) }p( ) = ,    x = 0, 1, 2,xx
α α

θ − θ 

It is important to note that S(x) for Br (α, β) and DBD(α,θ) is equal at the correct points of x. Bayesian estimate of parameters 
in the case n sample will be calculated in next section.

BAYESIAN ESTIMATE OF DISCRETE BURR DISTRIBUTION PARAMETERS IN N SAMPLE CASE
If X1,…, Xn has discrete Burr distribution with α and θ parameters, then 
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To calculate Bayesian estimators, three following cases should be considered:

The firrst case (α is known and θ is unknown) 

Suppose that θ has beta distribution with a and 1 parameters, so the previous density of θ is:
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Using (4) and (5), posterior density function of θ is obtained as follows:
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Which wi = wi2-wi1 ; so
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Now, the marginal distribution of X1,…, Xn is obtained by integrating (6) over θ :

1Continuous Burr distribution with parameters  α and β
2Continuous Pareto distribution with parameter β
3Discrete Burr distribution with parameters α and θ
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Supposing a squared-error loss function and known prior, the Bayesian estimate θ parameter

will be as follows:
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By putting A in (10) the following will be obtained:
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So the Bayesian estimator θ parameter in this case is 
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The second case (α is unknown and θ is known)

In this case α is assumed to have unknown prior distribution (ie, there is no prior knowledge about the distribution of α ), 
thus, the prior density of α can be written as follow:
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using (12) and (13) we get:
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Z(θ ) is calculated as follows:
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Since the posterior density obtained in (15) doesn't belong to the known distributions, therefore, the numerical methods 
will be used through R software. Let's assume X1,…, X25 is a random sample of discrete Burr distribution and θ = 0.1, 0.2, 0.3, 
using Metropolis-Hastings algorithm [6] a proper normal distribution will be considered as, q presupposition for parameter α, and 
applying the aforementioned algorithm through R software, a Markov chain of 10,000 posterior distribution members will be 
generated. If the loss function is squared error, the mean of this Markov chain, is the Bayesian estimate of the parameters, and 
if the loss function is the absolute error, then, the median of this Markov chain is the Bayesian estimate of the parame-ters. The 
results of these simulations are shown in the Tables 1 and 2 respectively.

θ ↓ α=1 α=2 α=3 α=4

0.1 α 1.2120 1.9623 2.8210 2.9420

var ( )α 0.0829 0.2222 0.5887 0.6661

0.2 α 1.6285 2.6540 3.8560 3.9910

var ( )α 0.1609 0.4266 1.1023 1.2491

0.3 α 2.0747 3.3550 4.902 5.0100

var ( )α 0.2546 0.6886 1.7974 1.9379

Table 1. Simulation results when the loss function is squared error.

θ ↓ α=1 α=2 α=3 α=4

0.1 α 1.1900 1.9096 2.7200 2.8180

var ( )α 0.0829 0.2222 0.5887 0.6661

0.2 α 1.5926 2.5727 3.7270 3.8140

var ( )α 0.1609 0.4266 1.1023 1.2491

0.3 α 2.0294 3.2620 4.7120 4.7900

var ( )α 0.2546 0.6886 1.7974 1.9379

Table 2. Simulation results when the loss function is the absolute error.

The third case (α and θ are unknown)

In this case suppose that α has unknown prior, and θ has Beta distribution as in the first case, both α and θ are independent.

α and θ joint prior density will be as follow:
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using (17) and (18) we have:
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where K is a constant value, it will be calculated as follows:
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Considering the posterior density obtained in (20) does not belong to known distributions, therefore, the numerical methods 

will be used through R software. Let's assume X1,…, X25 is a random sample of discrete Burr distribution and a = 3, using Metropolis-
Hastings algorithm [2], the proper uniform and normal distributions will be considered as q presupposition for θ and α parameters 
respectively, and applying the aforementioned algorithm through R software, a Markov chain of 10,000 posterior distribution 
members will be generated. If the loss function is squared error, the mean of this Markov chain is the Bayesian estimate of the 
parameters, and if the loss function is the absolute error, then, the median of this Markov chain is the Bayesian estimate of the 
parameters. The results of these simulations are shown in the Tables 3 and 4 respectively.

Table 3. Simulation results when the loss function is squared error.

θ ↓ α=1 α=2 α=3 α=4

0.1 α 2.1002 10.0120 16.290 26.644

var ( )α
0.3812 0.6965 0.7592 0.8379

0.2 α

var ( )α 0.5784 11.7378 36.1284 55.2465

0.3 α 0.5784 11.7378 36.1284 55.2465

var ( )α
0.0069 0.0114 0.0059 0.0029

0.1
α

var ( )α
0.2046 0.3094 0.3242 0.2523

0.2 α

var ( )α 2.1918 9.4980 12.7800 25.9300

0.3 α
0.4915 0.7429 0.7880 0.8728

var ( )α

0.1 α 0.5880 14.1243 13.2204 32.2304
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var ( )α
0.0102 0.0071 0.0039 0.0019

0.2 α

var ( )α
0.0557 0.2473 0.1675 0.1735

0.3 α

var ( )α 3.6080 14.1800 17.5700 17.7600

0.1 α
0.7012 0.8564 0.8621 0.8422

var ( )α

0.2 α 2.2266 18.6511 32.4364 33.6526

var ( )α
0.0083 0.0028 0.0027 0.0034

0.3 α

var ( )α
0.1066 0.1883 0.2394 0.2615

0.1 α

Table 4. Simulation results when the loss function is the absolute error.

θ ↓ α=1 α=2 α=3 α=4

0.1 α 1.9970 9.6170 15.1910 25.6790

var ( )α
0.3817 0.7022 0.7703 0.8451

0.2 α

var ( )α 0.5784 11.7378 36.1284 55.2465

0.3 α
0.0069 0.0114 0.0059 0.0029

var ( )α

0.1 α
0.2046 0.3094 0.3242 0.2523

var ( )α

0.2 α 2.0560 8.8940 12.6600 27.0000
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var ( )α
0.4918 0.7563 0.7966 0.8810

0.3 α

var ( )α 0.5880 14.1243 13.2204 32.2304

0.1 α
0.0102 0.0071 0.0039 0.0019

var ( )α

0.2 α
0.0557 0.2473 0.1675 0.1735

var ( )α

0.3 α 3.2630 14.8600 17.3100 17.6600

var ( )α
0.7068 0.8681 0.8725 0.8507

0.1 α

var ( )α 2.2266 18.6511 32.4364 33.6526

0.2 α
0.0083 0.0028 0.0027 0.0034

var ( )α

0.3 α
0.1066 0.1883 0.2394 0.2615

var ( )α

CONCLUSION
This study dealt with the Bayesian analysis of discrete Burr distribution parameters with two parameters in three n case, and 

using the proper prior distributions for the parameters, the Metropolis-Hastings method for numerical parameters
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