
 ISSN (Online) : 2319 - 8753
 ISSN (Print) : 2347 - 6710

 International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

 2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st & 22nd March Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1468

Bipartite GF (2
m
) Modular Multiplier Method

V.R.Venkatasubramani
#1

, M.Arunarumugam
#2

, R.Ragavendran
#3

, S.Bhuvaneswaran
#4

,

P.Naveen Kumar
#5

, S. Rajaram
#6

Department Of ECE, Thiagarajar College of Engineering, Madurai,Tamilnadu, India

1
Abstract—This paper proposes a new modular multiplication

method over GF(2m) that uses Least Significant Digit Multiplier

and Hybrid Karatsuba Multiplier (HKM), which are state of the

art field for secured Elliptic Curve Cryptography (ECC),

according to NIST. The work suggests the operand multiplicand

to be split into two parts that can be processed separately in

parallel thereby increasing the computational speed. The lower

part of the split multiplicand can be processed by calculating a

product modulo p(α)of the multiplier using Least Significant

Digit (LSD).The upper part of the split multiplicand can be

processed using HKM by calculating a product modulo p(α) of

the multiplier. A HKM requires least amount of space on a

FPGA. The LSD provides excellent area-time trade-off.

Complexity analysis comparison shows that the proposed scheme

has better calculation speed and has more flexibility in making

the compromise between area and time.

Keywords—Least Significant Digit (LSD);Hybrid Karatsuba

Multiplier (HKM);Elliptic Curve Cryptography(ECC).

1.INTRODUCTION

 Curve-based cryptography, especially Elliptic Curve

cryptography (ECC) [4] [2], has become increasingly

popular in the last few years. ECC scheme show good

properties for software and hardware implementation

because of the relatively short operand length compared to

other public-key schemes, like RSA [7]. They are thus the

preferred cryptosystem for the important domain of

embedded applications. There are two types of finite fields

standardized as underlying structure for ECC: prime fields

GF(p) and characteristic two fields GF(2
m
). The latter ones

are preferred for hardware realizations due to the smaller

hardware circuits required for the corresponding

arithmetic. ECC is used for exchanging keys over an

insecure channel and for digital signatures that require the

use of large module, which makes repeated modular

multiplications a computationally intensive task. The

overall time and area complexity of ECC implementations

heavily depends on the finite field multiplier

architecture[10] used. Hence, designing efficient

multiplier can have major benefits. For high-performance

systems, parallelism must be exploited as much as possible

to achieve a high throughput. There are numerous

techniques for speeding up modular multiplication that has

been reported in the literature. Among them, two major

techniques are notable. One is based on the LSD modular

multiplication algorithm that allows implementations to do

a trade-off between speed and area[14], thus resulting in

fast implementations tuned to the available resources of

the hardware. The other is based on the Karatsuba

algorithm, which has the best area-time product on an

FPGA compared to implementations in [9]

[12].Techniques for improving the speed of these two

approaches have been developed separately.

The work proposes a Bipartite GF(2
m
) Modular

Multiplication (BMM), which takes advantage of these

two approaches. The multiplicand is split into two parts

that can then be processed separately in parallel. The

HKM and the LSD significant multiplier algorithm can be

employed to process the upper and lower parts of the split

multiplicand, respectively. Due to parallel processing, the

proposed method is suitable for hardware as well as

software implementation in a multiprocessor environment.

 The remainder of the paper is organized as follows:

Section II gives an overview of LSD Multipliers and

conditions for choosing efficient reduction polynomials

and HKM. Section 3 introduces our Bipartite Modular

Multiplication. Section 4 shows the complexity analysis

for the existing LSD Multiplier and Modified LSD

multiplier. Finally, we end this conclusion.

2.PRELIMINARIES

2.1 DIGIT-SERIAL MULTIPLIERS

Finite field multiplication in GF(2
m
) of two elements A

and B to obtain a result C═A.B mod p ﴾α﴿ can be done

using LSD multipliers for binary fields GF(2
m
). LSD

multipliers provide a trade-off between speed and area [8].

Hence it is most preferred in cryptographic hardware

implementations [1], [5].Certain B’s coefficients are

processed at the same time. The number of coefficients

that are processed in parallel is the digit-size D. The total

number of digits is given by .The multiplier can
be rewritten as where .

Assuming B has been properly padded with zero coefficients for

the most significant bits. Hence, the multiplication can be

performed as shown in Algorithm 1.

Where a,bԑ GF (2m) and b ≠0.

Bipartite GF(2
m
) Modular Multiplier Method

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1469

2.1.1 Reduction mod p(α) for Digit Multipliers

 In step 7 of Algorithm 1, products of the form AαD

have to be reduced mod p(α). Optimum irreducible polynomials

can be determined using the Theorem 1 and 2 to minimize the

complexity of the reduction operation [8].

Theorem 1. Assume that the irreducible polynomial is of the

form with k<m, for t

. can be reduced to a degree less than m in one step with the

following equation:

 (2)

Theorem 2. For digit multipliers with digit-element size D, when

the intermediate results in Algorithm 1 (Step 4 and

Step 6) can be reduced to a degree less than m in one step.

Theorems 1 and 2 implicitly say that, for a given irreducible

polynomial the digit-element

size D has to be chosen based on the value of k, the degree of the

second highest coefficient in the irreducible polynomial.

2.2 Karatsuba Multiplier

The Karatsuba multiplier[6] can be used to compute

multiplications in any field of the form GF(2m), The inputs A and

B are split into two: AH, AL and BH, BL respectively. The AL and

BL terms have ⌈m/2⌉bits and the remaining ⌊m/2⌋ bits are in AH

and BH terms. Hence Karatsuba multiplication requires two ⌈m/2⌉
bit multiplications. Maximum number of AND gates and XOR

gates required for the 2⌈log
2
m⌉ bit basic recursive Karatsuba

multiplier is

#AND gates:

#XOR gates:

In addition, m number of two input XOR gates are required for

the computation of AH +AL and BH +BL.

The Simple Karatsuba multiplier is basic recursive

Karatsuba multiplier [15] with smaller modification. If an

n bit multiplication is needed to be done, n being any

integer, the input is split into two polynomials as in

equation (3). The polynomials AL and BL have terms

while the AH and BH polynomials have terms.

Karatsuba multiplication can be done with two bit

multiplications and a single bit multiplication. The

Simple Karatsuba multiplier requires at most one bit

padding (for the (AH+AL) (BH+BL) multiplication). It

therefore requires lesser number of gates for

implementation as compared with the Binary Karatsuba

multiplier [15]. For an n bit multiplication, the Simple

Karatsuba multiplier would be used recursively

for times. This is higher than the Binary Karatsuba

multiplier which would be used recursively for

times. Hence, the delay in the Simple Karatsuba

algorithm is expected to be higher than that of the Binary

Karatsuba algorithm.

C(x)=(AHx
n/2

+AL)(BHx
n/2

+BL)

 =AHBHx
n
+(AHBL+ALBH)x

n/2
+ALBL

 =AHBHx
n
+((AH+AL)(BH+BL)+AHBH+ALBL)x

n/2

+ALBL (3)

The basic Karatsuba multiplier explains a method to

multiply two n bit polynomials using three bit

multipliers. This can be achieved by splitting the n bit

polynomial into a 2-term polynomial with bits in each

term. It was shown that if A and B are two n=3kbit

polynomials, the Karatsuba multiplier for 3-term

polynomials can be used as shown in equation (4). This

results in six multiplications and 13 additions

C=AB

 =(A2x
2n/3 + A1x

n/3 + A0)(B2x
2n/3 + B1x

n/3 + B0)

 =A2B2x
4n/3 + (A2B1 + A1B2)x

n + (A2B0 + A0B2 + A1B1)x
2n/3 +

 (A1B0 + A0B1)x + A0B0

 =A2B2x
4n/3 + ((A2 + A1)(B2 + B1) + A2B2 + A1B1)x

n +

 (((A2 + A0)(B2 + B0) + A2B2 + A1B1 + A0B0)x
2n/3 +

 ((A1 + A0)(B1 + B0) + A1B1 + A0B0)x
n/3 + A0B0(4)

To apply the Binary Karatsuba multiplier recursively: Let n

be a composite number (if n is prime we pad it by one bit)

with the prime factors in increasing order being {p1,p2,p3…}.

To multiply two n bit numbers, we should first do thep1term

Karatsuba. Each term is having n/p1bits. The n/p1term

multiplication can be done usingp2term Karatsuba. The

p1/p2term multiplication can be done using thep3term

Karatsuba and so on.

3.BIPARTITE MODULAR MULTIPLICATION

METHOD

 In this section, a novel Bipartite Modular

Multiplication (BMM) is proposed. The block diagram of the

proposed BMM is shown in Fig 1. The multiplier A to be split

into two parts AH and AL so that A=AH+AL, The term

AL.Bmodp(α) [13], can be calculated using the proposed LSD

multiplier shown in Algorithm1 that processes the lower part

of the split multiplier AL. The other term, AH.Bmodp(α) [13],

can be calculated using the Hybrid Karatsuba Multiplier

algorithm that processes the upper part of the split multiplier

AH. These two calculations are performed in parallel. Since

the split operator AH and AL are half the length of A , the

calculations AL.B mod p(α)and AH.Bmod p(α) are performed

faster than the individual execution of the LSD multiplication

algorithm [11] and has better area-time trade-off than that of

the Hybrid Karatsuba Multiplication algorithm [15] with

unsplit operator.

Bipartite GF(2
m
) Modular Multiplier Method

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1470

Figure 1.Block diagram of a bipartite modular multiplier

3.1 LSD Multiplier

The Digit serial multiplier architecture in [8][11]is used as

a basis for developing the proposed BMM. It consists of

three main components - LSD multiplier, main reduction

circuit, and final reduction circuit. The LSD multiplier

computes the intermediate C and stores it in the

accumulator. The main reduction circuit is a shifter cum

reduction unit that shifts A left by D positions and reduce

the result mod p(α).The final reduction circuit is used to

reduce the contents in the accumulator to get the final

result C.

Algorithm 1 Proposed LSD Multiplier

Require:

1

0
,

m

i

i

iL aA where,a i GF(2),

1

0

d

i

D

i
iBB ,where B i is as in (1)

Ensure: C BAL . mod p(α) = ,
1

0

m

i

i

ic where c i GF(2)

pCreturn

forend

pAA

CmABC

do
D

m
to

D

m
ifor

AA

forend

CABC

do
D

m
toifor

C

D

LL

Li

m

LL

Dim
Li

mod:10

:9

mod:8

0:1:7

1
2

:6

2:5

:4

2]0:1[:3

1
2

0:2

0:1

2

2

A.bDi+0

A.bDi+1

A.bDi+2

A.bDi+3

Acc
Figure.3. LSD multiplier for D = 4

The LSD multiplier performs the operation

(Step 3 and 6in Algorithm 1). The implementation of the LSD

multiplier is as shown in Fig. 3 for a digit size D= 4[11]. It

consists of ANDing the multiplicand A with each element of the

digit of the multiplier B and XORing the result with the

accumulator Acc and storing it back in Acc. The LSD multiplier

in Step 3 of Algorithm 1 requires AND operations

for iterations.(denoted by the black dots),

XOR operations for iterations.(for XORing

the columns denoted by the vertical line plus the XOR operations

for the accumulator),In this LSD multiplier always most

significant bits of the result is zero for

iterations. The number of Flip-Flops (FF) required for

accumulating the result C is . Thus there is a

reduction of number of AND operations,

number of XOR operations and number of FFs activity

compared to that in [11]. However the operations in Step 6 of

p(α)

p(α

)

Modular Adder

C = A.B mod

p(α)

Reg S

Reg W

Karatsuba Multiplier

Reg W

Reg S

Least Significant Digit Multiplier

Reg p(α)

Reg B

B Reg

S

Reg A_L Reg A_H

AH AL

p(α) A B

Bipartite GF(2
m
) Modular Multiplier Method

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1471

Algorithm 1 are similar to that in [11] except for the decrease in

iteration by half. The complexity analysis for Algorithm 1 is

shown in Table 1.The proposed LSD multiplier method

requires multiplications, additions,

reads, and writes, The critical path delay of LSD

multiplier is , same as that in [11].

Figure.2. Proposed LSD Multiplier Architecture

3.2 Hybrid Karatsuba Multiplier

The Hybrid Karatsuba multiplier performs the operation for

.In Hybrid Karatsuba multiplier, except the

final recursion all recursions are done using the Simple

Karatsuba multiplier. The final recursion is done using the

General Karatsuba multiplier when the multiplicands have a size

lesser than 29 bits. The initial recursions using the Simple

Karatsuba multiplier result in low gate count, while the final

recursion using the General Karatsuba multiplier results in low

LUT requirements.
For a 233-bit Hybrid Karatsuba the initial four recursions are

done using the Simple Karatsuba multiplier, while the final

recursion is done with 14-bit and15-bit General Karatsuba

multipliers. The General Karatsuba multiplier however, the

smallest multiplication is a 13-term13-bit multiplication. This has

several operations which can be grouped in terms of their inputs.

Therefore, the General Karatsuba multiplier obtains maximum

utilization of the slices of the FPGA. In Hybrid Karatsuba

Multiplier design we implement the initial recursions using the

Simple Karatsuba multiplier and the final recursion is using the

General Karatsuba multiplier. For a 233 bit Hybrid Karatsuba

Multiplier, we do all the larger multiplications using the Simple

Karatsuba algorithm. The smallest multiplications, i.e. 14-bit and

15-bit, are done using the General Karatsuba algorithm. We now

determine the upper bound for the number of gates required for

an n bit Hybrid Karatsuba multiplier. Let and let k

be the number of recursions needed for Simple Karatsuba

multiplication. The final recursion using the General Karatsuba

algorithm is done with m bit multiplicands.

The number of AND gates required for an m' bit General

Karatsuba multiplication ism'(m'+1) / 2. Similarly, k recursions

of Simple Karatsuba multiplication require

XOR gates, and m' bit General Karatsuba

multiplication require (5/2)m’2-(7/2)m’+1 XOR gates. The upper

bound for the total number of AND gates and XOR gates required

for the n bit Hybrid Karatsuba multiplication is given.

 #AND gates:

 #XOR gates:

3.1.2Main Reduction Circuit
The main reduction circuit performs

the (Step 5in Algorithm 1). In this main

reduction circuits can be simple left shift by m/2bits for

.The critical path delay is zero for

iterations. Hence we save (k+1)D AND operations

and kD XOR operations reduced for iteration. m

number Flip flop to store A bits and k+1 number of flip flops to

store p(α) bits for this iterations. So, these iterations

save for k+1 number of flip flops. For to

iteration main reduction circuit performs

the pAA D

LL mod (Step 7in Algorithm 1). In this main

reduction circuits can be replaced by simple left shift by D bits

[11]. Here, the multiplicand A is shifted left by the digit-size D

which is equivalent to multiplying by . The result is then

reduced with the reduction polynomial by ANDing the higher D

elements of the shifted multiplicand with the reduction

polynomial p(α) (shown in the figure as pointed arrows) and

XORing the result[11]. We assume that the reduction polynomial

is chosen according to Theorem 2 in [11].

3.1.3 Final Reduction Circuit

 The final reduction circuit performs the operation

Cmodp(α)(Step 9in Algorithm 1)., where C is of size m+D-1. It

is implemented in [11], which is similar to the main reduction

circuit (Step 7 in Algorithm 1) without any shifting [11]. Here,

the most significant (D-1) elements are reduced using the

reduction polynomial p(α) in [11]. The area requirement for this

circuit is (k +1) (D-1) AND operations and (k+1)(D-1)

XORoperationsis less than that of the main reduction circuit in

[11]

IV. COMPLEXITY ANALYSIS

 The complexity analysis for the existing

LSD Multiplier methodis given in [1]. The complexity

analysis for the Modified LSD Multiplier (MLSD

Multiplier) is presented as follows

Table 4.1 Complexity analysis of proposed LSD multiplier

Table 4.2 Comparing Latency of the various methods

Method Multiplications Adds Reads Writes

LSD

Multiplier D

m2

D

m
2

4

D

m
1

D

m

Proposed

LSD

Multiplier

D

m

D

m
3

3

D

m
2

2

D

m

Bipartite GF(2
m
) Modular Multiplier Method

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1472

HKM algorithm requires (is equal to m
1.585

)

multiplications. HKM is usually faster when the operand

size is more than 100.

V.CONCLUSION

 The paper presents a fast method for modular multiplication

over GF. The multiplier is split into two parts that can then be

Processed in parallel, increasing the speed of calculation. The

upper part of the split multiplier is processed by calculating a

product modulo M by HKM of the multiplicand and this part of

the split multiplier. The lower part of the split multiplier is

processed by LSD multiplier calculating a product modulo p(α)

of the multiplier and this part of the split multiplier. Speeding up

techniques can be applied to LSD multipliers by there

isflexibility in choice of digit size position is left as a parameter.

This allows for theinvestigation of different design trade-offs.

That considerable speedup is possibleusing this

method.Complexity analysis shows that. In this paper we

proposed a novel Hybrid Karatsuba multiplier which uses the

best of the Simple and the General Karatsuba algorithms .this

result is lesser space requirements on FPGA.

REFERENCES

[1] N. Gura, S. Chang, H. Eberle, G. Sumit, V. Gupta, D. Finchelstein,

E. Goupy, and D. Stebila, “An End-to-End Systems Approach to

Elliptic Curve Cryptography,” Proc. Workshop Cryptographic

Hardware and Embedded Systems (CHES 2001), C¸ K. Koc¸ and C.
Paar, eds., pp. 351-366, 2001.

[2] N.Koblitz, “Elliptic Curve Cryptosystems,” Math. Computation,

vol. 48, pp. 203-209, 1987.
[3] N. Koblitz, “A Family of Jacobians Suitable for Discrete Log

Cryptosystems,” Advances in Cryptology, Proc. Crypto ’88, S.

Goldwasser, ed., pp. 94-99, 1988.
[4] F. R. Henriquez, et. al., On Fully Parallel Karatsuba Multipliers for

GF(2m), Proceedings of the International Conference on Computer

Science and Technology, CST 2003, 2003.
[5] G. Orlando and C. Paar, “A High-Performance Reconfigurable

Elliptic Curve Processor for GF(2m),” Proc. Workshop

Cryptographic Hardware and Embedded Systems (CHES 2000), C¸
K. Koc¸ and C. Paar, eds., 2000.

[6] G. Orlando and C. Paar, “A Scalable GF(p) Elliptic Curve

Processor Architecture for Programmable Hardware,” Proc.
Workshop Cryptographic Hardware and Embedded Systems (CHES

2001), C¸ K. Koc, D. Naccache, and C. Paar, eds., pp. 348-363,

May 2001.
[7] R.L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining

Digital Signatures and Public-Key Cryptosystems,” Comm. ACM,

vol. 21, no. 2, pp. 120-126, Feb. 1978.
[8] L. Song and K.K. Parhi, “Low Energy Digit-Serial/Parallel Finite

Field Multipliers,” J. VLSI Signal Processing, vol. 19, no. 2, pp.

149-166, June 1998.
[9] VLSI Computer Architecture, Arithmetic, and CAD Research

Group, Dept. of Electrical Eng., Illinois Inst. of Technology,

Chicago, IIT Standard Cells for AMI 0.5_m and TSMC
0.25_m/0.18_m (Version

1.6.0),2003,http://www.ece.iit.edu/vlsi/scells/home.html.

[10] Reza Azarderakhs, and ArashReyhani-Masoleh, ,” Efficient FPGA

Implementations of Point Multiplication on Binary Edwards and

Generalized Hessian Curves Using Gaussian Normal Basis,” IEEE

Transactions on very large scale integration (vlsi) systems, vol. 20,

no. 8, pp.1453-1466 August 2012.

[11] Sandeep Kumar,Thomas Wollinger, and ChristofPaar,”Optimum

Digit Serial GF(2m) Multipliers for Curve-Based Cryptography ”,

IEEE Transactions on Computer,Vol.55,no.10,pp.1306-

1311,October 2006.

[12] Chester Reberio,SujoySinhaRoy,D.Sankara Reddy, and

DebdeepMukhopadhyay,”Revisting the Ihho-Tsuji Inversion

Algorithm for FPGA Platforms”, IEEE Transactions on very large

scale integration (vlsi) systems, vol. 19, no. 8, pp.1508-1512

August 2011.

[13] Marcelo E. Kaihara and Naofumi Takagi,” Bipartite Modular

Multiplication Method” IEEE Transactions on Computers, vol. 57,

no. 2, pp.157-164 February 2008.

[14] V.R.Venkatasubramani, M.Surendar, and S.Rajaram,”Novel

Methods for Montgomery Modular Multiplicationfor Public Key

Cryptosystems”CNSA 2011,CCIS196,pp.320-330,2011.

[15] Chester Rebeiro and DebdeepMukhopadhyay, “Hybrid Masked

Karatsuba Multiplier forGF(2233)”11th IEEE VLSI Design and Test

Symposium, Kolkata, August 2007.

Operation statement Multiplications Ad

ds

Reads Writes Iteratio

ns

0C 0 0 0 0 0

do
D

m
toirof 1

2
0

 - - - - -

CABC Dim
Li 2]0:1[

2

1 1

2 0

D

m

2

end for - - - - -

 22

m

LL AA

0 0 1 1 0

do
D

m
to

D

m
irof

 1

2

- - - - -

 CmABC Li 0:1

1 1 2 0

D

m

2

 pAA D

LL mod

0

0

2

1

D

m

2

forend

- - - - -

return C mod p(α) 0 0 2 1 0

Total

D

m

D

m

3
3

D

m
2

2

D

m

-

