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Abstract—This paper proposes a new modular multiplication 

method over GF(2m) that uses Least Significant Digit  Multiplier 

and Hybrid Karatsuba Multiplier (HKM), which are state of the 

art field for secured Elliptic Curve Cryptography (ECC), 

according to NIST. The work suggests the operand multiplicand 

to be split into two parts that can be processed separately in 

parallel thereby increasing the computational speed. The lower 

part of the split multiplicand can be processed by calculating a 

product modulo p(α)of the multiplier using Least Significant 

Digit (LSD).The upper part of the split multiplicand can be 

processed using HKM by calculating a product modulo p(α) of 

the multiplier. A HKM requires least amount of space on a 

FPGA. The LSD provides excellent area-time trade-off. 

Complexity analysis comparison shows that the proposed scheme 

has better calculation speed and has more flexibility in making 

the compromise between area and time. 
 

Keywords—Least Significant Digit (LSD);Hybrid Karatsuba 

Multiplier (HKM);Elliptic Curve Cryptography(ECC). 

 

1.INTRODUCTION 

 Curve-based cryptography, especially Elliptic Curve 

cryptography (ECC) [4] [2], has become increasingly 

popular in the last few years. ECC scheme show good 

properties for software and hardware implementation 

because of the relatively short operand length compared to 

other public-key schemes, like RSA [7]. They are thus the 

preferred cryptosystem for the important domain of 

embedded applications. There are two types of finite fields 

standardized as underlying structure for ECC: prime fields 

GF(p) and characteristic two fields GF(2
m
). The latter ones 

are preferred for hardware realizations due to the smaller 

hardware circuits required for the corresponding 

arithmetic. ECC is used for exchanging keys over an 

insecure channel and for digital signatures that require the 

use of large module, which makes repeated modular 

multiplications a computationally intensive task. The 

overall time and area complexity of ECC implementations 

heavily depends on the finite field multiplier 

architecture[10] used. Hence, designing efficient 

multiplier can have major benefits. For high-performance 

systems, parallelism must be exploited as much as possible 

to achieve a high throughput. There are numerous 

techniques for speeding up modular multiplication that has 

been reported in the literature. Among them, two major 

 

 
 

techniques are notable. One is based on the LSD modular 

multiplication algorithm that allows implementations to do 

a trade-off between speed and area[14], thus resulting in 

fast implementations tuned to the available resources of 

the hardware. The other is based on the Karatsuba 

algorithm, which has the best area-time product on an 

FPGA compared to implementations in [9] 

[12].Techniques for improving the speed of these two 

approaches have been developed separately. 

The work proposes a Bipartite GF(2
m
) Modular 

Multiplication (BMM), which takes advantage of these 

two approaches. The multiplicand is split into two parts 

that can then be processed separately in parallel. The 

HKM and the LSD significant multiplier algorithm can be 

employed to process the upper and lower parts of the split 

multiplicand, respectively. Due to parallel processing, the 

proposed method is suitable for hardware as well as 

software implementation in a multiprocessor environment.  

      The remainder of the paper is organized as follows: 

Section II gives an overview of LSD Multipliers and 

conditions for choosing efficient reduction polynomials 

and HKM. Section 3 introduces our Bipartite Modular 

Multiplication. Section 4 shows the complexity analysis 

for the existing LSD Multiplier and Modified LSD 

multiplier. Finally, we end this conclusion. 

 

2.PRELIMINARIES 

2.1 DIGIT-SERIAL MULTIPLIERS 

Finite field multiplication in GF(2
m
) of  two elements A 

and B to obtain a result C═A.B mod p ﴾α﴿ can be done 

using LSD multipliers for binary fields GF(2
m
). LSD 

multipliers provide a trade-off between speed and area [8]. 

Hence it is most preferred in cryptographic hardware 

implementations [1], [5].Certain B’s coefficients are 

processed at the same time. The number of coefficients 

that are processed in parallel is the digit-size D. The total 

number of digits is given by .The multiplier can 
be rewritten as where    . 

 
Assuming B has been properly padded with zero coefficients for 

the most significant bits. Hence, the multiplication can be 

performed as shown in Algorithm 1. 

Where a,bԑ GF (2m) and b ≠0. 
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2.1.1 Reduction mod p(α) for Digit Multipliers 
 

 In step 7 of Algorithm 1, products of the form AαD 

have to be reduced mod p(α). Optimum irreducible polynomials 

can be determined using the Theorem 1 and 2 to minimize the 

complexity of the reduction operation [8]. 

 

Theorem 1. Assume that the irreducible polynomial is of the 

form with k<m, for t  

. can be reduced to a degree less than m in one step with the 

following equation: 

  

 (2) 

Theorem 2. For digit multipliers with digit-element size D, when 

the intermediate results in Algorithm 1 (Step 4 and 

Step 6) can be reduced to a degree less than m in one step.  

Theorems 1 and 2 implicitly say that, for a given irreducible 

polynomial the digit-element 

size D has to be chosen based on the value of k, the degree of the 

second highest coefficient in the irreducible polynomial. 

 

2.2 Karatsuba Multiplier 
 

The Karatsuba multiplier[6] can be used to compute 

multiplications in any field of the form GF(2m), The inputs A and 

B are split into two: AH, AL and BH, BL respectively. The AL and 

BL terms have ⌈m/2⌉bits and the remaining ⌊m/2⌋ bits are in AH 

and BH terms. Hence Karatsuba multiplication requires two ⌈m/2⌉ 
bit multiplications. Maximum number of AND gates and XOR 

gates required for the 2⌈log
2
m⌉ bit basic recursive Karatsuba 

multiplier is  

#AND gates:  

#XOR gates:  

In addition, m number of two input XOR gates are required for 

the computation of AH +AL and BH +BL. 

 

The Simple Karatsuba multiplier is basic recursive 

Karatsuba multiplier [15] with smaller modification. If an 

n bit multiplication is needed to be done, n being any 

integer, the input is split into two polynomials as in 

equation (3). The polynomials AL and BL have  terms 

while the AH and BH polynomials have  terms. 

Karatsuba multiplication can be done with two bit 

multiplications and a single  bit multiplication. The 

Simple Karatsuba multiplier requires at most one bit 

padding (for the (AH+AL) (BH+BL) multiplication). It 

therefore requires lesser number of gates for 

implementation as compared with the Binary Karatsuba 

multiplier [15]. For an n bit multiplication, the Simple 

Karatsuba multiplier would be used recursively 

for times. This is higher than the Binary Karatsuba 

multiplier which would be used recursively for 

times. Hence, the delay in the Simple Karatsuba 

algorithm is expected to be higher than that of the Binary 

Karatsuba algorithm. 

 

C(x)=(AHx
n/2

+AL)(BHx
n/2

+BL) 

       =AHBHx
n
+(AHBL+ALBH)x

n/2
+ALBL 

      =AHBHx
n
+((AH+AL)(BH+BL)+AHBH+ALBL)x

n/2
 

+ALBL     (3) 

 

The basic Karatsuba multiplier explains a method to 

multiply two n bit polynomials using three  bit 

multipliers. This can be achieved by splitting the n bit 

polynomial into a 2-term polynomial with  bits in each 

term. It was shown that if A and B are two n=3kbit 

polynomials, the Karatsuba multiplier for 3-term 

polynomials can be used as shown in equation (4). This 

results in six multiplications and 13 additions 

 

C=AB 

  =(A2x
2n/3 + A1x

n/3 + A0)(B2x
2n/3 + B1x

n/3 + B0) 

  =A2B2x
4n/3 + (A2B1 + A1B2)x

n + (A2B0 + A0B2 + A1B1)x
2n/3 +                     

      (A1B0 + A0B1)x + A0B0 

  =A2B2x
4n/3 + ((A2 + A1)(B2 + B1) + A2B2 + A1B1)x

n +  

      (((A2 + A0)(B2 + B0) + A2B2 + A1B1 + A0B0)x
2n/3 +  

      ((A1 + A0)(B1 + B0) + A1B1 + A0B0)x
n/3 + A0B0(4) 

 

To apply the Binary Karatsuba multiplier recursively: Let n 

be a composite number (if n is prime we pad it by one bit) 

with the prime factors in increasing order being {p1,p2,p3…}. 

To multiply two n bit numbers, we should first do thep1term 

Karatsuba. Each term is having n/p1bits. The n/p1term 

multiplication can be done usingp2term Karatsuba. The 

p1/p2term multiplication can be done using thep3term 

Karatsuba and so on. 
 

3.BIPARTITE MODULAR MULTIPLICATION 

METHOD 

             In this section, a novel Bipartite Modular 

Multiplication (BMM) is proposed. The block diagram of the 

proposed BMM is shown in Fig 1. The multiplier A to be split 

into two parts AH and AL so that A=AH+AL, The term 

AL.Bmodp(α) [13], can be calculated using the proposed LSD 

multiplier shown in Algorithm1 that processes the lower part 

of the split multiplier AL. The other term, AH.Bmodp(α) [13], 

can be calculated using the Hybrid Karatsuba Multiplier 

algorithm that processes the upper part of the split multiplier 

AH. These two calculations are performed in parallel. Since 

the split operator AH and AL are half the length of A , the 

calculations AL.B mod p(α)and AH.Bmod p(α) are performed 

faster than the individual execution of the LSD multiplication 

algorithm [11] and has better area-time trade-off than that of 

the Hybrid Karatsuba Multiplication algorithm [15] with 

unsplit operator.  
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Figure 1.Block diagram of a bipartite modular multiplier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1 LSD Multiplier 

The Digit serial multiplier architecture in [8][11]is used as 

a basis for developing the proposed BMM. It consists of 

three main components - LSD multiplier, main reduction 

circuit, and final reduction circuit. The LSD multiplier 

computes the intermediate C and stores it in the 

accumulator. The main reduction circuit is a shifter cum 

reduction unit that shifts A left by D positions and reduce 

the result mod p(α).The final reduction circuit is used to 

reduce the contents in the accumulator to get the final 

result C. 
 

 

 
Algorithm 1 Proposed LSD Multiplier 

Require: 
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Figure.3. LSD multiplier for D = 4 

 

The LSD multiplier performs the operation  

(Step 3 and 6in Algorithm 1). The implementation of the LSD 

multiplier is as shown in Fig. 3 for a digit size D= 4[11]. It 

consists of ANDing the multiplicand A with each element of the 

digit of the multiplier B and XORing the result with the 

accumulator Acc and storing it back in Acc. The LSD multiplier 

in Step 3 of Algorithm 1 requires AND operations 

for iterations.(denoted by the black dots), 

XOR operations for  iterations.(for XORing 

the columns denoted by the vertical line plus the XOR operations 

for the accumulator),In this LSD multiplier always most 

significant bits of the result is zero for  

iterations. The number of Flip-Flops (FF) required for 

accumulating the result C is . Thus there is a 

reduction of  number of AND operations,   

number of XOR operations and  number of FFs activity 

compared to that in [11]. However the operations in Step 6 of 

p(α) 

p(α

) 
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Algorithm 1 are similar to that in [11] except for the decrease in 

iteration by half. The complexity analysis for Algorithm 1 is 

shown in Table 1.The proposed LSD multiplier method 

requires  multiplications,  additions,  

reads, and writes, The critical path delay of LSD 

multiplier is , same as that in [11]. 

 

 
Figure.2. Proposed LSD Multiplier Architecture  

 

3.2 Hybrid Karatsuba Multiplier 

 

The Hybrid Karatsuba multiplier performs the operation for 

.In Hybrid Karatsuba multiplier, except the 

final recursion all recursions are done using the Simple 

Karatsuba multiplier. The final recursion is done using the 

General Karatsuba multiplier when the multiplicands have a size 

lesser than 29 bits. The initial recursions using the Simple 

Karatsuba multiplier result in low gate count, while the final 

recursion using the General Karatsuba multiplier results in low 

LUT requirements. 
For a 233-bit Hybrid Karatsuba the initial four recursions are 

done using the Simple Karatsuba multiplier, while the final 

recursion is done with 14-bit and15-bit General Karatsuba 

multipliers. The General Karatsuba multiplier however, the 

smallest multiplication is a 13-term13-bit multiplication. This has 

several operations which can be grouped in terms of their inputs. 

Therefore, the General Karatsuba multiplier obtains maximum 

utilization of the slices of the FPGA. In Hybrid Karatsuba 

Multiplier design we implement the initial recursions using the 

Simple Karatsuba multiplier and the final recursion is using the 

General Karatsuba multiplier. For a 233 bit Hybrid Karatsuba 

Multiplier, we do all the larger multiplications using the Simple 

Karatsuba algorithm. The smallest multiplications, i.e. 14-bit and 

15-bit, are done using the General Karatsuba algorithm. We now 

determine the upper bound for the number of gates required for 

an n bit Hybrid Karatsuba multiplier. Let  and let k 

be the number of recursions needed for Simple Karatsuba 

multiplication. The final recursion using the General Karatsuba 

algorithm is done with m bit multiplicands. 

The number of AND gates required for an m' bit General 

Karatsuba multiplication ism'(m'+1) / 2. Similarly, k recursions 

of Simple Karatsuba multiplication require 

XOR gates, and m' bit General Karatsuba 

multiplication require (5/2)m’2-(7/2)m’+1 XOR gates. The upper 

bound for the total number of AND gates and XOR gates required 

for the n bit Hybrid Karatsuba multiplication is given. 

 

 

   #AND gates:    

   #XOR gates:   

 

3.1.2Main Reduction Circuit 
The main reduction circuit performs 

the (Step 5in Algorithm 1). In this main 

reduction circuits can be simple left shift by m/2bits for 

.The critical path delay is zero for 

iterations. Hence we save (k+1)D AND operations 

and kD XOR operations reduced for  iteration. m 

number Flip flop to store A bits and k+1 number of flip flops to 

store p(α) bits for this iterations. So, these iterations 

save for k+1 number of flip flops. For to  

iteration main reduction circuit performs 

the   pAA D

LL mod (Step 7in Algorithm 1). In this main 

reduction circuits can be replaced by simple left shift by D bits 

[11]. Here, the multiplicand A is shifted left by the digit-size D 

which is equivalent to multiplying by . The result is then 

reduced with the reduction polynomial by ANDing the higher D 

elements of the shifted multiplicand with the reduction 

polynomial p(α) (shown in the figure as pointed arrows) and 

XORing the result[11]. We assume that the reduction polynomial 

is chosen according to Theorem 2 in [11]. 

 

3.1.3 Final Reduction Circuit 
 

                  The final reduction circuit performs the operation 

Cmodp(α)(Step 9in Algorithm 1)., where C is of size m+D-1. It 

is implemented in [11], which is similar to the main reduction 

circuit (Step 7 in Algorithm 1) without any shifting [11]. Here, 

the most significant (D-1) elements are reduced using the 

reduction polynomial p(α) in [11]. The area requirement for this 

circuit is (k +1) (D-1) AND operations and (k+1)(D-1) 

XORoperationsis less than that of the main reduction circuit  in 

[11] 

 

IV. COMPLEXITY ANALYSIS 

                       The complexity analysis for the existing 

LSD Multiplier methodis given in [1]. The complexity 

analysis for the Modified LSD Multiplier (MLSD 

Multiplier) is presented as follows 

 

 
Table 4.1 Complexity analysis of proposed LSD multiplier 

 

 

 
Table 4.2 Comparing Latency of the various methods 

Method Multiplications Adds Reads Writes 

LSD 

Multiplier D

m2  

D

m  
2

4


D

m  
1

D

m  

Proposed 

LSD 

Multiplier 

D

m  

D

m  
3

3


D

m  
2

2


D

m  
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HKM algorithm requires  (is equal to m
1.585

) 

multiplications. HKM is usually faster when the operand 

size is more than 100. 

 

V.CONCLUSION 

 

         The paper presents a fast method for modular multiplication 

over GF. The multiplier is split into two parts that can then be  

Processed in parallel, increasing the speed of calculation. The 

upper part of the split multiplier is processed by calculating a 

product modulo M by HKM of the multiplicand and this part of 

the split multiplier. The lower part of the split multiplier is 

processed by LSD multiplier calculating a product modulo p(α) 

of the multiplier and this part of the split multiplier. Speeding up 

techniques can be applied to LSD multipliers by there 

isflexibility in choice of digit size position is left as a parameter. 

This allows for theinvestigation of different design trade-offs.  

 

 

That considerable speedup is possibleusing this 

method.Complexity analysis shows that. In this paper we 

proposed a novel Hybrid Karatsuba multiplier which uses the 

best of the Simple and the General Karatsuba algorithms .this 

result is lesser space requirements on FPGA. 
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