

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

An ISO 3297: 2007 Certified Organization

Vol. 3, Special Issue 3, April 2014

International Conference on Signal Processing, Embedded System and Communication Technologies and their applications for Sustainable and Renewable Energy (ICSECSRE '14)

Organized by

Department of ECE, Aarupadai Veedu Institute of Technology, Vinayaka Missions University,
Paiyanoor-603 104, Tamil Nadu, India

Black Out Recovery in Transmission Network Using Greedy Algorithm

Naveen.G, Arther Jain .A

M.E [Power Electronics and Drives], Thangavelu Engineering College, Chennai, India

Abstract — A graph theory based methodology called dijkstra's algorithm is used to find the energizing path of power to flow for a given network after a complete blackout is proposed here. Whenever a blackout occurs in the transmission network, the power system operators are under immense pressure to restore the network. The main aim of the power system restoration is to restore as much load as possible & as quickly as possible. After a blackout occurs first all the generators has to be energized and then synchronized. After synchronization of generators only all the loads can be supplied. For energizing the generators a sequential procedure has to be followed. If the sequence used is wrong then it may lead to cascaded outages. The Dijkstra's algorithm helps in finding the sequence to energize the generators based on least impedance path called minimum spanning tree. Newton Raphson based load flow technique is applied to this resultant minimum spanning tree(power flow path). Based on the results (voltage, current and power flow) obtained from the load flow solutions, other constraints of the restoration problem are applied.

Keywords— Graph theory, blackout, minimum spanning tree, load flow solution.

I. INTRODUCTION

Power system is a complex network involving the flow of power, which is generated using various techniques to meet the need of the industries or domestic consumers [1]. A brownout is an intentional drop in voltage in an electrical power supply system used for load reduction in an emergency [7]. A voltage reduction may be an effect of disruption of an electrical grid, or may occasionally be

imposed in an effort to reduce load and prevent a blackout [9].

II. LOAD FLOW ANALYSIS

Power flow studies are of great importance in planning & designing the future expansion of power system as well as in determining the best operation of existing systems [2]. The principle information obtained from power flow study is the magnitude & phase angle of voltage at each bus the real & reactive power following in each line [3]. Power flow calculations usually employ iterative techniques such as Newton-Raphson method solves the polar form of power flow equations until $\Delta P & \Delta Q$ mismatches at all buses fall within specified tolerances [8]. Newton's method is a successive approximation procedure based on initial estimate of the unknown and the use of Taylor's series expansion and the terms are limited to first order approximation [4]. LF Newton is developed for solution of power flow problems by Newton Raphson method [5].

III. GRAPH THEORY

Graph theory is a branch of data structures concerned about how the networks can be encoded & their properties measured [6]. A graph (G) is a set of points called vertices & the lines connecting the points called Edges. The graphs are broadly classified into two typesIt differs from a directed graph as each edge in E is an unordered pair of vertices. If (v,w) is an undirected edge then (v,w) = (w,v). The other classification is weighted & unweighted graphs. Here electrical network is analyzed as an undirected & weighted graph.

Copyright to IJAREEIE <u>www.ijareeie.com</u> 228

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

An ISO 3297: 2007 Certified Organization

Vol. 3, Special Issue 3, April 2014

International Conference on Signal Processing, Embedded System and Communication Technologies and their applications for Sustainable and Renewable Energy (ICSECSRE '14)

Organized by

Department of ECE, Aarupadai Veedu Institute of Technology, Vinayaka Missions University,

Paiyanoor-603 104, Tamil Nadu, India

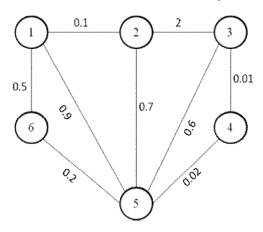


Fig. 1. Example Problem

IV. DIJKSTRA'S ALGORITHM

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1959, is a graph search algorithm that solves the single-source shortest path problem for a graph with nonnegative edge path costs, producing a shortest path tree [6]. It can also be used for finding costs of shortest paths from a single vertex to a single destination vertex by stopping the algorithm once the shortest path to the destination vertex has been determined.

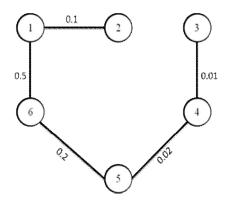


Fig. 2 Minimum Spanning Tree by Dijkstra's Algorithm

By applying Dijkstra's Algorithm we get minimum spanning tree of distance 0.83.

TABLE I. Comparison of Results of Various Algorithm

ALGORITHM	DISTANCE CALCULATED FROM MINIMUMSPANNING TREE
Prim's Algorithm	1.03
Dijkstra's Algorithm	0.83
Kruskal's Algorithm	1.03
Reverse Delete Algorithm	1.03

V. RECOVERY PROCESS

The whole recovery process is divided into 3 stages.

A. Black Start

Due to any critical fault or transient in the network a complete blackout will be occurring.

B. System Reconstruction

The generator (Slack bus) started first & based on the sequence of starting & starting time the generators on the network are started.

C. Load Recovery

Initially the critical loads are fed & later after stabilization of the critical loads all other loads are connected.

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

An ISO 3297: 2007 Certified Organization

Vol. 3, Special Issue 3, April 2014

International Conference on Signal Processing, Embedded System and Communication Technologies and their applications for Sustainable and Renewable Energy (ICSECSRE '14)

Organized by

Department of ECE, Aarupadai Veedu Institute of Technology, Vinayaka Missions University,
Paiyanoor-603 104, Tamil Nadu, India

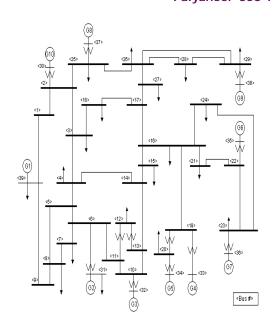


Fig.3. Initial Network

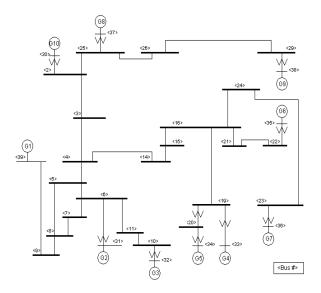


Fig.4. System Reconstruction Stage

 $TABLE\ II\ .\ \ Bus\ Data\ Of\ Initial\ Network$

Bus	Bus		Load		Gene	erator
No	Code	Voltage	MW Mvar		MW	Mvar
1	0	1	0	0	0	0
2	0	1	0	0	0	0
3	0	1	322	2.4	0	0
4	0	1	500	184	0	0
5	0	1	0	0	0	0
6	0	1	0	0	0	0
7	0	1	233.8	84	0	0
8	0	1	522	176	0	0
9	0	1	0	0	0	0
10	0	1	0	0	0	0
11	0	1	0	0	0	0
12	0	1	7.5	88	0	0
13	0	1	0	0	0	0
14	0	1	0	0	0	0
15	0	1	320	153	0	0
16	0	1	329	32.3	0	0
17	0	1	0	0	0	0
18	0	1	158	30	0	0
19	0	1	0	0	0	0
20	0	1	628	103	0	0
21	0	1	274	115	0	0
22	0	1	0	0	0	0
23	0	1	247.5	84.6	0	0
24	0	1	308.6	-92	0	0
25	0	1	224	47.2	0	0
26	0	1	139	17	0	0
27	0	1	281	75.5	0	0
28	0	1	206	27.6	0	0
29	0	1	283.5	26.9	0	0
30	2	1	0	0	250	0
31	1	1	9.2	4.6	0	0
32	2	1	0	0	650	0
33	2	1	0	0	632	0
34	2	1	0	0	508	0
35	2	1	0	0	650	0
36	2	1	0	0	560	0
37	2	1	0	0	540	0

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

An ISO 3297: 2007 Certified Organization

Vol. 3, Special Issue 3, April 2014

International Conference on Signal Processing, Embedded System and Communication Technologies and their applications for Sustainable and Renewable Energy (ICSECSRE '14)

Organized by

Department of ECE, Aarupadai Veedu Institute of Technology, Vinayaka Missions University,

Paiyanoor-603 104, Tamil Nadu, India

I	38	2	1	0	0	830	0
	39	2	1	1104	250	1000	0

TABLE III Output of Initial Network

Lo	ad	Gene	eration	Injected
MW	Mvar	MW	Mvar	Mvar
6097	1409	6145	1445.9	0

Total Line loss						
MW	Mvar					
48.310	36.862					

TABLE IV . Detailed Output Of Initial Network

Copyright to IJAREEIE <u>www.ijareeie.com</u> 231

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

An ISO 3297: 2007 Certified Organization

Vol. 3, Special Issue 3, April 2014

International Conference on Signal Processing, Embedded System and Communication Technologies and their applications for Sustainable and Renewable Energy (ICSECSRE '14)

Organized by

Department of ECE, Aarupadai Veedu Institute of Technology, Vinayaka Missions University,
Paiyanoor-603 104, Tamil Nadu, India

Bus no	Voltage	Voltage Angle Load Generation		ration	Injected		
			MW	Mvar	MW	Mvar	Mvar
1	1.004	-8.408	0	0	0	0	0
2	0.985	-5.3	0	0	0	0	0
3	0.966	-8.525	322	2.4	0	0	0
4	0.944	-9.657	500	184	0	0	0
5	0.95	-8.525	0	0	0	0	0
6	0.953	-7.782	0	0	0	0	0
7	0.942	-10.22	233	84	0	0	0
8	0.942	-10.77	522	176	0	0	0
9	0.988	-10.47	0	0	0	0	0
10	0.962	-4.966	0	0	0	0	0
11	0.958	-5.922	0	0	0	0	0
12	0.937	-5.876	7.5	88	0	0	0
13	0.957	-5.712	0	0	0	0	0
14	0.951	-7.457	0	0	0	0	0
15	0.947	-7.538	320	153	0	0	0
16	0.961	-7.538	329	32.3	0	0	0
17	0.965	-5.752	0	0	0	0	0
18	0.964	-8.098	158	30	0	0	0
19	0.979	0.195	0	0	0	0	0
20	0.976	-0.81	628	103	0	0	0
21	0.959	-2.97	274	115	0	0	0
22	0.976	2.178	0	0	0	0	0
23	0.973	1.939	247	84.6	0	0	0
24	0.967	-5.612	308	-92	0	0	0
25	0.996	-3.796	224	47.2	0	0	0
26	0.987	-5.072	139	17	0	0	0
27	0.97	-7.291	281	75.5	0	0	0
28	0.989	-1.128	206	27.6	0	0	0
29	0.992	1.96	283	26.9	0	0	0
30	1	-2.668	0	0	250	87.2	0
31	1	0	9.2	4.6	525	227.	0
32	1	2.801	0	0	650	234.	0
33	1	5.394	0	0	632	141.	0
34	1	4.497	0	0	508	133	0
35	1	7.64	0	0	650	195	0
36	1	10.907	0	0	560	133	0
37	1	3.416	0	0	540	336	0
38	1	9.433	0	0	830	65.8	0
20	I 4	10.10	110	250	100	100	

VI RESULTS OF NEWTON-RAPHSON METHOD

Line		Power a	at bus & line	flow	Line los	S
Fron	n To	MW	Mvar	MVA	MW	Mvar
1		0.000	0.000	0.000		
	2	-125.392	24.820	127.824	0.671	-61.246
	39	125.392	-24.820	127.824	0.158	-71.359
2		0.000	0.000	0.000		
	1	126.063	-86.066	152.640	0.671	-61.246
	3	363.659	94.209	375.664	1.924	-2.131
	25	-239.722	66.443	248.759	4.534	-8.760
	30	-250.000	-74.586	260.889	0.000	12.691
3			-322.000	-2.400	322.009	
	2	-361.736	-96.340	374.345	1.924	-2.131
	4	90.339	85.188	124.170	0.241	-16.229
	18	-50.603	8.752	51.355	0.034	-19.479
4			-500.000	-184.000	532.781	
	3	-90.098	-101.416	135.657	0.241	-16.229
	5	-140.702	-43.228	147.193	0.190	-8.983
	14	-269.200	-39.356	272.062	0.661	-1.741
5		0.000	0.000	0.000		
	4	140.892	34.245	144.995	0.190	-8.983
	6	-457.407	-77.875	463.988	0.476	2.265

Copyright to IJAREEIE <u>www.ijareeie.com</u> 232

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

An ISO 3297: 2007 Certified Organization

Vol. 3, Special Issue 3, April 2014

International Conference on Signal Processing, Embedded System and Communication Technologies and their applications for Sustainable and Renewable Energy (ICSECSRE '14)

Organized by

Department of ECE, Aarupadai Veedu Institute of Technology, Vinayaka Missions University,

					Pa	iyanoor-603 104,	Tam	il Na	adu, Ind	ia			
	8	316.514	43.629	319.507	0.911	-0.462	11		0.000	0.000	0.000		
								6	363.425	20.229	363.988	1.014	-0.800
6		0.000	0.000	0.000				10	-363.427	-65.466	369.276	0.593	-0.339
	5	457.883	80.139	464.843	0.476	2.265		12	0.001	45.237	45.237	0.036	0.971
	7	420.738	84.670	429.173	1.223	8.594							
	11	-362.412	-21.029	363.021	1.014	-0.800	12		-7.500	-88.000	88.319		
	31	-516.210	-143.780	535.859	0.000	79.029		11	0.034	-44.266	44.266	0.036	0.971
								13	-7.534	-43.734	44.379	0.036	0.976
7			-233.800	-84.000	248.432								
	6	-419.516	-76.076	426.358	1.223	8.594	13		0.000	0.000	0.000		
	8	185.716	-7.924	185.885	0.155	-5.140		10	-285.601	-76.397	295.642	0.379	-2.637
								14	278.031	31.687	279.830	0.774	-6.998
8			-522.000	-176.000	550.872			12	7.570	44.710	45.347	0.036	0.976
	5	-315.604	-44.092	318.669	0.911	-0.462							
	7	-185.560	2.784	185.581	0.155	-5.140	14		0.000	0.000	0.000		
	9	-20.836	-134.692	136.294	0.371	-29.592		4	269.861	37.615	272.470	0.661	-1.741
								13	-277.256	-38.685	279.942	0.774	-6.998
9		0.000	0.000	0.000				15	7.395	1.070	7.472	0.007	-32.872
	8	21.207	105.100	107.218	0.371	-29.592							
117.8	39 8 9 9	-21.207	-105.100	107.218	0.027	-	15		-320.000	-153.000	354.696		
117.	377							14	-7.388	-33.942	34.737	0.007	-32.872
10		0.000	0.000	0.000				16	-312.612	-119.058	334.516	1.106	-4.022
10	11	364.020	65.127	369.800	0.593	-0.339							
	13	285.980	73.760	295.339	0.379	-2.637	16		-329.000	-32.300	330.582		
	32	-650.000	-138.887	664.673	0.000	95.486		15	313.718	115.036	334.144	1.106	-4.022
	JZ	330.000	130.007	JUT.U/J	0.000	70.100		17	230.494	-60.279	238.246	0.425	-7.052
								19	-502.095	-35.931	503.379	4.372	24.659

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

An ISO 3297: 2007 Certified Organization

Copyright to IJAREEIE

Vol. 3, Special Issue 3, April 2014

234

International Conference on Signal Processing, Embedded System and Communication Technologies and their applications for Sustainable and Renewable Energy (ICSECSRE '14)

Organized by

Department of ECE, Aarupadai Veedu Institute of Technology, Vinayaka Missions University,

		-			-					_			-
					Pai	iyanoor-603 104,	Tam	il Na	adu, Ind	ia			
	21	-328.465	35.266	330.353	0.953	-7.401		23	43.380	25.408	50.273	0.019	-17.229
	24	-42.651	-86.392	96.347	0.028	-5.761		35	-650.000	-129.755	662.825	0.000	65.891
							23		-247.500	-84.600	261.560		
17		0.000	0.000	0.000				22	-43.361	-42.636	60.811	0.019	-17.229
	16	-230.070	53.226	236.147	0.425	-7.052		24	354.204	1.205	354.206	2.924	12.573
	18	208.966	-6.651	209.072	0.328	-8.420		36	-558.343	-43.168	560.009	1.657	90.132
	27	21.104	-46.575	51.134	0.020	-29.845							
							24		-308.600	92.000	322.022		
18		-158.000	-30.000	160.823				16	42.680	80.631	91.230	0.028	-5.761
	3	50.638	-28.231	57.976	0.034	-19.479		23	-351.280	11.369	351.464	2.924	12.573
	17	-208.638	-1.769	208.645	0.328	-8.420							
							25		-224.000	-47.200	228.919		
19		0.000	0.000	0.000				2	244.256	-75.204	255.571	4.534	-8.760
	16	506.468	60.590	510.079	4.372	24.659		26	69.987	-3.567	70.078	0.173	-48.698
	33	-629.063	-82.369	634.433	2.937	59.579		37	-538.242	31.571	539.168	1.758	67.958
	20	122.595	21.779	124.515	0.113	2.230							
							26		-139.000	-17.000	140.036		
20		-628.000	-103.000	636.391				25	-69.813	-45.131	83.131	0.173	-48.698
	34	-505.518	-83.451	512.360	2.482	49.640		27	261.018	80.848	273.252	1.102	-11.383
	19	-122.482	-19.549	124.032	0.113	2.230		28	-140.507	-24.706	142.663	0.879	-66.490
								29	-189.697	-28.011	191.754	2.134	-77.314
21		-274.000	-115.000	297.155									
	16	329.418	-42.667	332.170	0.953	-7.401	27		-281.000	-75.500	290.966		
	22	-603.418	-72.333	607.738	3.202	32.014		17	-21.084	16.731	26.915	0.020	-29.845
								26	-259.916	-92.231	275.795	1.102	-11.383
22		0.000	0.000	0.000									
	21	606.620	104.347	615.529	3.202	32.014	28		-206.000	-27.600	207.841		
~		****											

www.ijareeie.com

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

An ISO 3297: 2007 Certified Organization

Vol. 3, Special Issue 3, April 2014

International Conference on Signal Processing, Embedded System and Communication Technologies and their applications for Sustainable and Renewable Energy (ICSECSRE '14)

Organized by

Department of ECE, Aarupadai Veedu Institute of Technology, Vinayaka Missions University,

Paiyanoor-603 104, Tamil Nadu, India

36.862

	26	141.386	-41.784	147.431	0.879	-66.490
	29	-347.386	14.184	347.676	1.737	-5.691
29		-283.500	-26.900	284.773		
	26	191.831	-49.304	198.066	2.134	-77.314
	28	349.123	-19.874	349.688	1.737	-5.691
	38	-824.454	42.278	825.537	5.546	108.145
30		250.000	87.276	264.796		
	2	250.000	87.277	264.797	0.000	12.691

48.310

Total loss

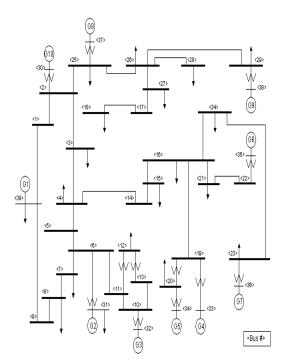


Fig.5. Load Recovery Stage

VI. CONCLUSION

This paper presents the use of Dijkstra's Algorithm for service restoration plan after a complete blackoutBy application of graph theory the process had been made simple and user friendly. In order to demonstrate the efficiency of dijkstra's algorithm it has been applied to IEEE 10 Generator 39 Bus System. We carry out three stages of recovery process by using dijkstra's algorithm. Newton-Raphson method is used to carry out load flow analysis. The simulation results show that Newton-Raphson method is effective and promising. It has been found that by application of dijkstra's algorithm the transmission losses can be reduced to significant extent. The advantages are (1) solution procedure leads to the optimum solution & (2) avoid combinational explosion of the number of the number of configurations to be tested. This it is believed that the results from Dijkstra's algorithm

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

An ISO 3297: 2007 Certified Organization

Vol. 3, Special Issue 3, April 2014

International Conference on Signal Processing, Embedded System and Communication Technologies and their applications for Sustainable and Renewable Energy (ICSECSRE '14)

Organized by

Department of ECE, Aarupadai Veedu Institute of Technology, Vinayaka Missions University,

Paiyanoor-603 104, Tamil Nadu, India

in power system restoration results in better plan, so it can be considered for real time application. Since the simulation implementation is done only for 39 bus system it can be extended to networks with more number of buses.

REFERENCES

- [1] M.M. Adibi, R.J. Kafka, and D.P. Milanicz, "Expert System Requirements For Power System Restoration," IEEE Transactions on Power Systems, vol. 9, no. 3, pp. 1592– 1598, 1994..
- [2] M.M. Adibi, P. Clelland, and L. Fink et al., "Power System Restoration- A Task Force Report," IEEE Transactions on Power Systems, vol. 2, no. 2, pp. 271–277, 1987.
- [3] M.M. Adibi, J.N. Borkoski, and R.J. Kafka, "Power System Restoration -- The Second Task Force Report," IEEE Transactions on Power Systems, vol. 2, no. 4, pp. 927–933, 1987.
- [4] M.M.Abidi & R.J.Kafka, Power System Restoration Issues, 1990.
- [5] M.M.Abidi, L.H Fink "Power System Restoration Planning" IEEE transaction on Power Systems Vol-9, PP 22-28, February.
- [6] Mark Allen Weiss (2007) Data Structures and Algorithm Analysis in c.
- [7] "Development of an Interactive rule based system for bulk power system restoration ",C.Y.Teo & Weishen,IEEE transaction on Power System, Vol-15, Num-2, May 2000
- [8] J.Gutierrez et al.: Policies for Restoration of a Power System; IEEETRANS. v.PWRS-2 n.2, May 1987, pp.436-42
- [9] Hadi Saadat (1999) "Power System Analysis" McGraw-Hill, Newyork.