Research & Reviews: Journal of Pure and
Applied Physics

Certain Rodrigues Formula for F, and ¢, Type Polynomials

Nisar KS?, Agarwal P2*, Khan MA2 and Jain S*
Department of Mathematics, College of Arts and Science, Prince Sattam bin Abdulaziz University,

Saudi Arabia

2Department of Mathematics, Anand International College of Engineering, Jaipur-303012, India
3Department of Applied Mathematics, Aligarh Muslim University, Aligarh, India
“Department of Mathematics, Poornima College of Engineering, Jaipur, India

Received date: 14/10/2015
Accepted date: 12/11/2015
Published date: 15/11/2015

*For Correspondence

Agarwal P, Department of Mathematics,
Anand International College of Engineering,
Jaipur-303012, India, Tel: +91-9694097809

E-mail: goyal.praveen2011@gmail.com

Keywords: Rodrigues formula, Polynomials, Arbitrary,
Probability theory, Value problems, Manipulations,
Special functions.
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ABSTRACT

Suitable manipulationsin Rodrigues type formulae can lead to numerous
other type of formulae which are significatly important and are expected to
find applications in probability theory and boundary value problems. Using
Leibnitz formulae for n*" derivative of the product of two and three functions
some elegant Rodrigues type formulae for polynomials corresponding to ¢,
function and Appell’s F, function have been derived.

INTRODUCTION

Using Leibnitz formulae for n™" derivative of the product of two and three functions some elegant Rodrigues type formulae
for polynomials corresponding to ¢, function and Appell’s F, function have been derived. In recent years, many authors have been
consider the ¢, function and Appell’s F, type function in their studies ™°.. In deriving the operational representations of various

polynomials, we use the following fact that

Doyt = LOXA) oy d (1)
T(1+A—p) dx

Where 4 and 4 , 1> u are arbitrary real numbers. In particular, use has been made of the following results "2

D'e* =(-1)e™* (2)
D'x™* =(a), (1) x™*" (3)
Dix* = (a)r(_l)rxﬂw (4)
D'x ™" = (a+n), (—1) x*" )]
Dn—rxa—lwy — %xa—lw (6)

(@),
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(I—a-n),

where n and r are denote positive integers and

,a is not an integer

(o), =a(a+1)-- (a+n-1)(a), =1
Further,
D" (uv)= Z "C.D""uD’v

=0

uvw ZZ 'C""C D" uD"'vD'w

r=0 5=0
we also need the following definitions 4513141,

The Appell’s F, function defined by
[d b b C X, y] zz (a)nz+n (b) (b) Xm x”

m=0n=0 (€) i m' n
and the confluent hypergeometric function # is defined by

¢l[a ﬁ VX, y] ZZ( )m+n(ﬂ)HLX

e 0 SR (A
Rodrigues Type Formula
In this section we developed Rodrigues type formulae for F, and ¢, functions
D" {x"(1-x) " (1+x)7}

= (a),x (1= x) " (1+x) yF[ np.r: LL}
a; I-x 1+x

D" {xn+a—l(1_x2)—ﬁ}

a; 1-x 1+x

:mLxHU—XQ*E{ﬂuﬁﬂ; ;L“gii

D" {x(1-x)"(1+x)7}

, -n;8,7;
=(a)nx'”"’(l—x)'ﬁ(1+x)"Fl[ By LL}
l-a-n; I-x 1+x
D' {x(1-x")"}
:(a)”xafl(l_xz)f/fﬁ -np, B L’L
l-a—-n; 1-x 1+x

D" {x"”“"e””"(l - x)’/j}

= (), x'(1-x)"e™g, {_”;ﬂ : mx,x}

a; 1-x

D" {x"’“”e"m(l +x)’ﬂ}

228 1+x

= (&), x (1 +2) "™ {_”; A mx,i}

D" {xzthuefmxx—/}}

-n; f;
= (a)n xt}z*/ﬁle—rmr¢1 {a . ﬁ mx,1:|

s

D" {xa—l-t-ne—mxe—kx }

_ el e e, | TR
=(a),x e™e g o X, X
;

Proof of 13:

D" {x" (1=x) " (1+x) 7}

RRJPAP | Volume 3 | Issue 3 | December , 2015

(13)

(14)

(17)

(18)

25



= Z (_ )r s (_1) ) DTS o D:(l _ x)—[f Dr(l + x)‘?
=0 5=0 rls!

S8 O CEDT @ sy () (1-2) B 1Y (), (1427

=0 s=0 rls! (a)m

— a-1 -p -y
=(a),x " (1-x)"(1+x)"F ,
(@),x (=2 1+ 07 F| e

-1 5,7; X x}
Proof of 16:
D" {x*(1-x")"}

,XE%D" - V{ a+n- I}DY{(I x) }Dr{(1+x) }
n_n-r ( n)H-S( 1)r+s
'Zolszo: rls!

e T (B, (), (e

= wngy g | BB xx
(@),x*"(1-x7) Fl{l—a—n; 1—x’1+x}

Proof of 17:

D" {x e (1-x)"}

zz( n),., (D™ D e kD e} o (1 -7

=050 rls!

B L Pl Al P P

=0 5=0 rls! (a ),+X
— (a)nxa—l(l _x)f efmx¢l |:_naﬂa mx’x:|
a; 1-x
Proof of 18:

D" {xa'“"e"”x(l + x)'ﬂ}

=3 S EeCD poers i) e fomd pr {1474

=0 s=0 rls!

_i”z’:( n),..(=D" (a), KLY (Y e ™ (<1 (B), (14 %)

prrgpry rls! (a),,,
- L —n: B X
:(a)nxal(l_x) ﬂe mx¢l|: aaﬂa mx,——

; 1+x

Proof of 19:

D" {xa—lme—mxx—/?}

Zz( ), CD™ s {xawx—l}D.s {efm}D,- {x’/’}

rls!

LD @ sy o1y 0

=0 5=0 rls! (@),

=(a),x“ e, [7’1;'& mx,l}
a:

s

Proof of 20:
D" {xa—nne—mxe—kx}

ULy 1 ner—s | _atn-l —mx rf ke
=3 S DD v ey prfe o fo )

g o rls!
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= ww (_n)r+,\' (_1)HS (a)n xa+r+kl (_1)3 (m)x em™ (_l)r (k), e*kx

=0 5=0 rls! (@),

a;

| Ik
= (a),7 xaflefmxe—l\x¢l |: 37 )C,X:|

Similar way one can prove all the equations.

CONCLUSION

We conclude this paper by noting that, the results deduced above are significant and can lead to yield numerous other

Rodrigues type formulae involving various special functions by suitable manipulations. More importantly, they are expected to find
some applications in probability theory and boundary value problems.
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