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Abstract- Genes are encoding regions that form
necessary building block inside the cell and show the
way to proteins which are achieving a variety of
functions. However, some genes may get mutated.
Such genes are responsible for cancer occurrence. It
can be discovered by closely examining samples taken
from patients to identify faulty genes. Gene
expression dataset usually comes with only dozens of
tissues/samples but with thousands or even tens of
thousands of genes/features. In this paper, we employ
feature selection techniques for analyzing cancer
microarray gene expression data. Feature selection
technique is used to select the most possibly cancer-
related genes from huge microarray gene expression
data. It aims to achieve improved classification
performance. This can be achieved by the measures
of T-Test, Chi-Square Test and Information gain.
Cancer classification using microarray data poses
another major challenge because of the huge number
of genes compared to the number of tissue samples.
Only a small number of genes in the microarray data
which consisting of thousands of genes show strong
correlation with the target phenotypes. This paper
presents the Naive Bayes algorithm for the
classification task. A comprehensive framework that
incorporates feature selection and classification
techniques is capable of successfully classifying new
samples as infected or normal.

Index Terms-Gene Expression Data, Classification,
Feature selection method, Naive Bayes algorithm

I. INTRODUCTION

Data mining is the computational process of analysis
of large quantities of data. It uses information from past
data to analyze the outcome of a particular problem or
situation that may arise. Data classification is the form of
data analysis that extracts models of describing important
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data classes. Such models called classifiers, predict
categorical class labels. Such analysis can help us with
better understanding of data at large. The class label of
each training label is provided a state called supervised
learning that is the learning of the classifier of supervised
in that it is told to a class each training tuple belong. In
learning, training data are analyzed by classification
algorithm in which test data are used to estimate the
accuracy of classification rules.

1.1 BASICS OF GENE EXPRESSION DATA

Gene expression is the process by which information
from a gene is used in the synthesis of a functional gene
product. These products are often proteins, but in non
protein coding genes such as rRNA genes or tRNA
genes, product is a structural or housekeeping RNA.
Gene expression studies can also involve looking at
profile or patterns of expression of several genes whether
quantitating changes in expression levels or looking at
overall patterns of expression, real time PCR is used by
most scientists performing gene expression. Based on the
levels of the gene expression data optimized genes are
classified based on different classifiers.

1.2 MICROARRAY DATA CLASSSIFICATION

The micro array data are images, which have to be
transformed into gene expression matrices in which rows
represent genes, columns represent various samples such
as tissues or experimental conditions, and numbers in
each cell characterizes the expression level of particular
gene in the particular sample. Microarray based disease
classification system takes labeled gene expression data
samples and generates a classifier model that classifies
new data samples into different predefined diseases.
Microarray data classification is a supervised leaning
task that predicts the diagnostic category of a sample
from its expression array phenotype.
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2.1 GENE SELECTION

In this study, a number of gene selection
methods have been introduced to select informative
genes. The different dataset genes are classified using
classifier like SVM, Naive Bayesian and optimized
genes obtained through feature selection methods like T-
Test, information gain and mutual information.

I1l. FEATURE SELECTION METHODS

The importance of feature selection methods is
selecting informative genes prior to classification of
microarray data for cancer prediction and diagnosis.
Feature selection method removes irrelevant and
redundant features to improve classification accuracy.
Feature selection methods can be categorized into filter,
wrapper, and embedded or hybrid. The filter approach
selects features without involving any data-mining
algorithm. The filter algorithms are evaluated based on

Fig.1 Microarray data four different evaluation criteria namely, distance,
information, dependency and consistency. The wrapper
Il. GENE EXPRESSION DATA SETS approach selects feature subset based on the classifier
and ranks feature subset using predictive accuracy or
The datasets considered in the simulation are cluster goodness. It is more computationally expensive
Iris, yeast, Spellman dataset, breast cancer. All these data than the filter model.
sets are publicly available and are two class gene
expression 3.1T-TEST

To measure the relevance of a gene, the t-test is
U S S ——— widely used, assuming that there are two classes of
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Fig.2 Dataset obtain according to a specific hypothesis. This is
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designed specifically for multiple tests having at least
two discrete outcomes (such as normal and mutated
gene). The chi-square test is always testing what
scientists call the null hypothesis, which states that there
is no significant difference between the expected and
observed result. The formula for calculating chi-square
() is:
1
. Coims mzw:s (observed;; — expectedi]-)2
j=1

expected;;

i=1

A Chi Square Test is often used to measure a
goodness of fit between an observed and expected
distribution of values knowing how to perform a Chi
Square test can be useful for testing probable to expected
outcomes, fitting points to a curve, or testing a statistical
hypothesis.

3.3 INFORMATION GAIN

Information gain, of a term measures the
number of bits of information obtained for category
prediction by the presence or absence of the term in a
document. Information Gain measures the decrease in
entropy when the feature given is absent. This is the
application of a more general technique, the
measurement of informational entropy, to the problem of
deciding how important a given feature is. Informational
entropy, when measured using Shannon entropy, is
notionally the number of bits of data it would take to
encode a given piece of information. The more space a
piece of information takes to encode, the more entropy it
has. Intuitively, this makes sense because a random
string has maximum entropy and cannot be compressed,
while a highly ordered string can be written with a brief
description of the string’s information. In the context of
classification, the distribution of instances among classes
is the information in question. If the instances are
randomly assigned among the classes, the number of bits
necessary to encode this class distribution is high,
because each instance would need to be enumerated.

On the other hand, if all the instances are in a
single class, the entropy would be lower, because the bit-
string would simply say “All instances save for these few
are in the first class.” Therefore function measuring
entropy must increase when the class distribution gets
more spread out and be able to be applied recursively to
permit finding the entropy of subsets of the data. The
following formula satisfies both of these requirements:
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IG(X) = H(D)— H(D|X) where
H(D) = - Z (ni/n) log(ni/n) i=1,...1 and

H(DIX) = - Z (I Xjl/m)H(D[X-X])

px(S) is the probability of a training example in the set S
to be of the positive/ negative class. We discretized
continuous features using information theoretic binning.
For each dataset we selected the subset of
features with non-zero information gain. Information
Gain can be used only on discrete features and hence for
numeric features discretization is necessary prior to
computing Information Gain. Entropy-based
discretization method is generally used for gene
expression data. Similar, to t-Statistic, features are
selected based on the larger values of Information Gain.

IV. CLASSIFIERS
4.1 NAIVE BAYES CLASSIFIER

A Naive Bayes classifieris a simple
probabilistic classifier based on applying Bayes'
theorem with strong (naive) independence assumptions.
A more descriptive term for the underlying probability
model would be "independent feature model™. In simple
terms, a naive Bayes classifier assumes that the presence
or absence of a particular feature is unrelated to the
presence or absence of any other feature, given the class
variable. Naive Bayes is that it only requires a small
amount of training data to estimate the parameters
(means and variances of the variables) necessary for
classification. Because independent variables are
assumed, only the variances of the variables for each
class need to be determined and not the entire covariance
matrix.

V. DISCUSSION AND CONCLUSION

We showed how combining a filtering
technique for feature selection with SVM leads to
substantial improvement in generalization performance
of the SVM models in the five classification datasets of
the competition. Another lesson learned from our
submission is that there is no single best feature selection
technique across all five datasets. We experimented with
different feature selection techniques and picked the best
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one for each dataset. Of course, an open question still
remains: why exactly these techniques worked well
together with Support Vector Machines. A theoretical
foundation for the latter is an interesting topic for future
work.
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