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ABSTRACT— We consider the collaborative data 

publishing problem for anonymizing horizontally 

partitioned data at multiple data providers. We 

consider a new type of “insider attack” by colluding 

data providers who may use their own data records (a 

subset of the overall data) in addition to the external 

background knowledge to infer the data records 

contributed by other data providers. The paper 

addresses this new threat and makes several 

contributions. First, we introduce the notion of m-

privacy, which guarantees that the anonymized data 

satisfies a given privacy constraint against any group 

of up to m colluding data providers. Second, we 

present heuristic algorithms exploiting the equivalence 

group monotonicity of privacy constraints and 

adaptive ordering techniques for efficiently checking 

m-privacy given a set of records. Finally, we present a 

data provider-aware anonymization algorithm with 

adaptive m-privacy checking strategies to ensure high 

utility and m-privacy of anonymized data with 

efficiency. Experiments on real-life datasets suggest 

that our approach achieves better or comparable utility 

and efficiency than existing and baseline algorithms 

while providing m-privacy guarantee. 
 

I. INTRODUCTION 

There is an increasing need for sharing data that 

contain personal information from distributed 

databases. . For example, in the healthcare domain, a 

national agenda is to develop the Nationwide Health 

Information Network (NHIN) to share information 

among hospitals and other providers, and support 

appropriate use of health information beyond direct 

patient care with privacy protection. Privacy 

preserving data analysis and data publishing, have 

received considerable attention in recent years as 

promising approaches for sharing  

Fig. 1. Distributed data publishing settings. 

data while preserving individual privacy. When the 

data are distributed among multiple data providers or 

data owners, two main settings are used for 

anonymization. One approach is for each provider to 

anonymize the data independently (anonymized and-

aggregate), which results in potential loss of integrated 

data utility. A more desirable approach is 

collaborative data publishing which anonymizes data 

from all providers as if they would come from one 

source (aggregate- and-anonymize), using either a 

trusted third-party (TTP) or Secure Multi-party 

Computation (SMC) protocols to do computation. 

Problem Settings: We consider the collaborative data 

publishing setting (Figure 1B) with horizontally 

partitioned data across multiple data providers, each 

contributing a subset of records Ti. As a special case, a 

data provider could be the data owner itself who is 

contributing its own records. This is a very common 
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scenario in social networking and recommendation 

systems. Our goal is to publish an anonymized view of 

the integrated data such that a data recipient including 

the data providers will not be able to compromise the 

privacy of the individual records provided by other 

parties. Considering different types of malicious users 

and information they can use in attacks, we identify 

three main categories of attack scenarios. While the 

first two are addressed in existing work, the last one 

receives little attention and will be the focus of this 

paper. 

A.Attacks by External Data Recipient Using 

Anonymized Data. A data recipient, e.g. P0, could be 

an attacker and attempts to infer additional 

information about the records using the published data 

(T*) and some background knowledge (BK) such as 

publicly available external data. Most literature on 

privacy preserving data publishing in a single provider 

setting considers only such attacks. Many of them 

adopt a weak or relaxed adversarial or Bayes-optimal 

privacy notion to protect against specific types of 

attacks by assuming limited background knowledge. 

For example, k-anonymity prevents identity disclosure 

attacks by requiring each equivalence group, records 

with the same quasi-identifier values, to contain at 

least k records. Representative constraints that prevent 

attribute disclosure attacks include l-diversity, which 

requires each equivalence group to contain at least l 

“well-represented” sensitive values, and t-closeness, 

which requires the distribution of a sensitive attribute 

in any equivalence group to be close to its distribution 

in the whole population 

B.Attacks by Data Providers Using Intermediate 

Results and Their Own Data: We assume the data 

providers are semi honest, commonly used in 

distributed computation setting. They can attempt to 

infer additional information about data coming from 

other providers by analyzing the data received during 

the anonymization. A trusted third party (TTP) or 

Secure Multi-Party Computation (SMC) protocols 

(e.g.) can be used to guarantee there is no disclosure 

of intermediate information during the anonymization.  

C.Attacks by Data Providers Using Anonymized Data 

and Their Own Data. Each data provider, such as P1 in 

Figure 1, can also use anonymized data T* and his own 

data (T1) to infer additional information about other 

records. Compared to the attack by the external 

recipient in the first attack scenario, each provider has 

additional data knowledge of their own records, which 

can help with the attack. This issue can be further 

worsened when multiple data providers collude with 

each other. In the social network or recommendation 

setting, a user (having an account herself) may attempt 

to infer private information about other users using the 

anonymized data or recommendations assisted by 

some background knowledge and her own account 

information. Malicious users may collude or even 

create artificial accounts as in a shilling attack. We  

 

define and address this new type of “insider attack” by 

data providers in this paper..  
 

II. RELATED WORK AND m-PRIVACY DEFINITION 
 

Privacy preserving data analysis and publishing 

has received considerable attention in recent years [1], 

[2], [3]. Most work has focused on a single data 

provider setting and considered the data recipient as 

an attacker. A large body of literature [2] assumes 

limited background knowledge of the attacker and 

defines privacy using relaxed adversarial notion [7] 

by considering specific types of attacks. 

Representative principles include k-anonymity [8], 

[9], l-diversity [7], and t-closeness [10]. Few recent 

works have modeled the instance level background 

knowledge as corruption and studied perturbation 

techniques under these weak privacy notions [12]. In 

the distributed setting we studied, since each data 

holder knows its own records, the corruption of 

records is an inherent element in our attack model and 

is further complicated by the collusive power of the 

data providers. On the other hand, differential privacy 

[1], [3] is an unconditional privacy guarantee for 

statistical data release or data computations. While 

providing a desirable unconditional privacy guarantee, 

non-interactive data release with differential privacy 

remains an open problem. Many different 

anonymization algorithms have been introduced so far 

including Datafly [13], Incognito [14], and Mondrian 

[11]. In our research we considered the Mondrian 

algorithm as a baseline because its efficiency and 

extensibility. There are some works focused on 

anonymization of distributed data. [5], [6], [15] 
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studied distributed anonymization for vertically 

partitioned data using k-anonymity. Zhong etal. [16] 

studied classification on data collected from individual 

data owners (each record is contributed by one data 

owner) while maintaining k-anonymity. Jurczyk et al. 

[17] proposed a notion called l′-site-diversity to ensure 

anonymity for data providers in addition to privacy of 

the data subjects. Mironov etal. [18] studied SMC 

techniques to achieve differential privacy. Mohammed 

et al. [4] proposed SMC techniques for anonymizing 

distributed data using the notion of LKCprivacy to 

address high dimensional data. Our work is the first 

that considers data providers as potential attackers in 

the collaborative data publishing setting and explicitly 

models the inherent instance knowledge of the data 

providers as well as potential collusion between them 

for any weak privacy. 

We first formally describe our problem setting. 

Then we present our m-privacy definition with respect 

to a given privacy constraint to prevent inference 

attacks by m-adversary, followed by its  

properties. 

Let T = {t1, t2, . .} be a set of records horizontally 

distributed among n data providers P = {P1, P2, . . .Pn}, 

such that Ti _ T is a set of records provided by Pi. We 

assume AS is a sensitive attribute with domain DS. If 

the records contain multiple sensitive attributes then a 

new sensitive attribute AS can be defined as a 

Cartesian product of all sensitive attributes. Our goal 

is to publish an anonymized table T* while preventing 

any m-adversary from inferring AS for any single 

record. 

A. m-Privacy 

To protect data from external recipients with 

certain background knowledge BK, we assume a given 

privacy requirement C, defined by a conjunction of 

privacy constraints: C1 ^ C2 ^ . . . ^ Cw. If a set of 

records T* satisfies C, we say C(T*) = true. Any of the 

existing privacy principles can be used as a 

component constraint. 

In our example (Table I), the privacy constraint C 

is defined as C = C1 ^ C2, where C1 is k-anonymity 

with k = 3, and C2 is l-diversity with l = 2. Both 

anonymized tables, T*
a and T*

b satisfies C, although as 

we have shown earlier, T*
a may be compromised by an 

m-adversary such as P1. We now formally define a 

notion of m-privacy with respect to a privacy 

constraint C, to protect the anonymized data against 

m-adversaries in addition to the external data 

recipients. The notion explicitly models the inherent 

data knowledge of an m-adversary, the data records 

they jointly contribute, and requires that each 

equivalence group, excluding any of those records 

owned by an m-adversary, still satisfies C. 

Definition 2.1: (m-PRIVACY) Given n data providers, a 

set of records T, and an anonymization mechanism A, 

an m-adversary I (m ≤ n - 1) is a coalition of m 

providers, which jointly contributes a set of records TI. 

Sanitized records T*= A(T) satisfy m-privacy, i.e. are 

m-private, with respect to a privacy constraint C. 

B. Monotonicity of Privacy Constraints 

Generalization based monotonicity has been 

defined for privacy constraints in the literature 

(Definition 2.2) [7], [10] and has been used for 

designing efficient generalization algorithms to satisfy 

a privacy constraint ([9], [11], [7], [10]). In this paper 

we will refer to it as generalization monotonicity. 

Definition 2.2: (GENERALIZATION MONOTONICITY OF 

A PRIVACY CONSTRAINT [7], [10]) A privacy 

constraint C is generalization monotonic if and only if 

for any set of anonymized records T* satisfying C, all 

its further generalizations satisfy C as well. 

Generalization monotonicity assumes that 

original records T have been already anonymized and 

uses them for further generalizations. In this paper, we 

also introduce more general, record-based definition 

of monotonicity in order to facilitate the analysis and 

design of efficient algorithms for checking m-privacy. 

 

III. VERIFICATION OF m-PRIVACY 

Checking whether a set of records satisfies m-

privacy creates a potential computational challenge 

due to the combinatorial number of m-adversaries that 

need to be checked. In this section, we first analyze 

the problem by modeling the checking space. Then we 

present heuristic algorithms with effective pruning 

strategies and adaptive ordering techniques for 

efficiently checking m-privacy for a set of records 

w.r.t. an EG monotonic privacy constraint C. 

A. Adversary Space Enumeration 

Given a set of nG data providers, the entire space 

of madversaries (m varying from 0 to nG - 1) can be 

represented using a lattice shown in Figure 2. Each 

node at layer m represents an m-adversary of a 

particular combination of m-providers. The number of 

all possible m-adversaries is equal to (nmg). Each node 

has parents (children) representing their direct super- 

(sub-) coalitions. For simplicity the space is also 

represented as a diamond, where a horizontal line 

corresponds to all m-adversaries with the same m 

value, the bottom node corresponds to               0-

adversary (external data recipient), and the top line to 

(nG - 1)-adversaries. In order to verify m-privacy w.r.t. 

a constraint C for a set of records, we need to check C 

for the records excluding any subset of records owned 

by any     m-adversary.  

Fig. 2. m-Adversary space. 
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When C is EG monotonic, we only need to check 

C for the records excluding all records from any m-

adversary. For example, in Figure 2, given m = 2, all 

coalitions that need to be checked are represented by 

question marks. 

B. Heuristic Algorithms 

The key idea of our heuristic algorithms is to 

efficiently search through the adversary space with 

effective pruning such that not all m-adversaries need 

to be checked. This is achieved by two different 

pruning strategies, an adversary ordering technique, 

and a set of search strategies that enable fast pruning. 

C.Pruning Strategies: The pruning strategies are 

possible thanks to the EG monotonicity of m-privacy. 

If a coalition is not able to breach privacy, then all its 

sub-coalitions will not be able to do so and hence do 

not need to be checked (downward pruning).  
. 

On the other hand, if a coalition is able to breach 

privacy, then all its super-coalitions will be able to do 

so and hence do not need to be checked (upward 

pruning). In fact, if a sub-coalition of an m-adversary 

is able to breach privacy, then the upward pruning 

allows the algorithm to terminate  

 
Fig. 3. Pruning strategies for m-privacy check  

 

 

 

immediately as the m-adversary will be able to breach 

privacy (early stop). Figure 3 illustrates the two 

pruning strategies where + represents a case when a 

coalition does not breach privacy and - otherwise. 

D.Adaptive Ordering of Adversaries: In order to 

facilitate the above pruning in both directions, we 

adaptively order the coalitions based on their attack  

 

powers (Figure 4). This is motivated by the following 

observations. For downward pruning, super-coalitions 

of m-adversaries with limited attack powers are 

preferred to check first as they are less likely to breach 

privacy and hence increase the chance of downward 

pruning.  

 

 

In contrast, sub-coalitions of m-adversaries with 

significant attack powers are preferred to check  

as they are more likely to breach privacy and hence 

increase the chance of upward pruning (early-stop). 
. 

 

 

 

 
Fig. 4. Adaptive ordering for efficient pruning and the worst-

case scenario without any pruning possible  
To quantify privacy fulfillment by a set of records, 

which is used to measure the attack power of a 

coalition and privacy of remaining records (used to 

facilitate the anonymization, which we will discuss in 

next section), we introduce the privacy fitness score 

w.r.t. C for a set of records. 

Definition 3.1: (PRIVACY FITNESS SCORE) Privacy 

fitness FC for a set of records T* is a level of the 

fulfillment of the privacy constraint C. A privacy 

fitness score is a function f of privacy fitness with  

values greater or equal to 1 only if C(T*) = true, 
 

score
FC(T∗ ) = f (FC1 (T*), FC2 (T*), ….. , FCw(T*)) 

 

In our setting, C is defined as k-anonymity        ^l-

diversity. The privacy fitness score can be defined as a 

weighted average of the two fitness scores with α 2 (0, 

1). When C(T*) = false,  
score

FC(T*) = max(1- ϵ, FC(T*)), 

where ϵ is small. 

In our example scoreFC is defined as follow: 
 

 
In order to maximize the benefit of both pruning 

strategies, the super-coalitions of     m-adversaries are 

generated in the order of ascending fitness scores 

(ascending attack powers), and the sub-coalitions of 

m-adversaries are generated in the order of descending 

fitness scores (descending attack powers) (Figure 4). 
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Now we present several heuristic algorithms that 

use different search strategies, and hence utilize 

different pruning. All of them use the adaptive 

ordering of adversaries to enable fast pruning. 

E.The Top-Down Algorithm: The top-down algorithm 

checks the coalitions in a top-down fashion using 

downward pruning, starting from   (nG -1)-adversaries 

and moving down until a violation by an m-adversary 

is detected or all       m-adversaries are pruned or 

checked. 

F.The Bottom-Up Algorithm: The bottom-up 

algorithm checks coalitions in a bottom up fashion 

using upward pruning, starting from 0-adversary and 

moving up until a violation by any adversary is 

detected (early-stop) or all m-adversaries are checked. 

G.The Binary Algorithm: The binary algorithm, 

inspired by the binary search algorithm, checks 

coalitions between (nG - 1) -adversaries and m-

adversaries and takes advantage of both upward and 

downward pruning’s (Figure 5, Algorithm 1). The 

goal of each iteration is to search for a pair Isub and 

Isuper, such that Isub is a direct sub-coalition of Isuper and 

Isuper breaches privacy while Isub does not. Then Isub 

and all its sub-coalitions are pruned (downward 

pruning), Isuper and all its super-coalitions are pruned 

(upward pruning) as well. 

 

IV. ANONYMIZATION FOR m-PRIVACY 

After defining the m-privacy verification 

algorithm, we can now use it in anonymization of a 

horizontally distributed dataset to achieve m-privacy. 

In this section, we will present a baseline algorithm, 

and then our approach that utilizes a data provider-

aware algorithm with adaptive m-privacy checking 

strategies to ensure high utility and m-privacy for 

anonymized data. 

Since we have shown that m-privacy with respect 

to a generalization monotonic constraint is 

generalization monotonic (Theorem 2.1), most 

existing generalization-based anonymization 

algorithms can be modified to achieve m-privacy – 

every time a set of records is tested for a privacy 

constraint C, we check m-privacy w.r.t. C instead. As 

a baseline algorithm to achieve m-privacy, we adapted 

the multidimensional Mondrian algorithm [11] 

designed for k-anonymity. A main limitation of such a 

simple adaptation is that groups of records are formed 

oblivious of the data providers, which may result in 

over-generalization in order to satisfy m-privacy.  

We introduce a simple and general algorithm 

based on the Binary Space Partitioning (BSP) 

Algorithm 2). Similar to the Mondrian algorithm, 

which is also an example of BSP algorithms, it 

recursively chooses an attribute to split data points in 

the multidimensional domain space until the data 

cannot be split any further while satisfying           m-

privacy w.r.t. C. However, the algorithm has three 

novel features: 1) it takes into account the data 

provider as an additional dimension for splitting; 2) it 

uses the privacy fitness score as a general scoring 

metric for selecting the split point; 3) it adapts its m-

privacy verification strategy for efficient verification. 

The pseudo code for our provider-aware 

anonymization algorithm is presented in Algorithm 2. 

We describe the algorithm details with respect to the 

novel features below. 

 

V. EXPERIMENTAL RESULTS 

We present two sets of experiment results with 

the following goals: 1) to compare and evaluate the 

different m-privacy verification algorithms given a set 

of records, and 2) to evaluate and compare the 

proposed anonymization algorithm for a given dataset 

with the baseline algorithm in terms of both 

utility and efficiency. 

A. Experiment Setup 



Collaboration of  Data Using M-Privacy 

 

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14                                                                 1318 

 

We used combined training and test sets of the 

Adult dataset2. Records with missing attribute values 

have been 2The Adult dataset has been prepared using the Census 

database from 1994, http://archive.ics.uci.edu/ml/datasets/Adult 

removed. All remaining 45,222 records have been 

used in all experiments. The Occupation has been 

chosen as a sensitive attribute AS. This attribute has 14 

distinct values. Data are distributed among n data 

providers P1, P2, . . . , Pn such that their distribution 

follows a uniform or exponential distribution. We 

observe similar results for both of them and only 

report those for the exponential distribution in the 

paper. 

The privacy constraint C is defined by            k-

anonymity [9] and l-diversity [7]. C is EG monotonic. 

We note again m-privacy is orthogonal to the privacy 

constraint being used in its definition. Both m-privacy 

verification and anonymization use privacy fitness 

scores, but with different values of the weight 

parameter α. Values of α can be defined in a way that 

reflects restrictiveness of privacy constraints.  

The impact of the weight parameter to overall 

performance was experimentally investigated and 

values of α for the most efficient runs have been 

chosen as defaults. All experiment and algorithm 

parameters and their default values are listed in Table 

II. 
B. m-Privacy Verification: 

The objective of the first set of experiments is to 

evaluate the efficiency of different algorithms for m-

privacy verification given a set of records TG with 

respect to the previously defined privacy constraint C. 

Attack Power: In this experiment, we compared the 

different m-privacy verification heuristics against 

different attack powers. We used two different groups 

of records with relatively small and large average 

number of records per data provider, respectively. 

Figure 6 shows the runtime with varying m for 

different heuristics for the two groups. 

The first group counts 150 records and has a small 

average fitness score per provider (equal to 0.867), 

which reflects a high probability of privacy  

Fig. 6. Runtime (logarithmic scale) vs. m. 
breach by a large m-adversary. For almost all 

values of m the binary algorithm achieves the best 

performance due to its efficient upward and 

downward pruning. However, the top-down algorithm 

is comparable with binary for m > nG/2. 

The second group counts 750 records and has a 

larger average fitness score per provider (equal to 

2.307). Therefore intuitively, it is very unlikely that a 

coalition of adversaries will be able to breach privacy 

and the downward pruning can be applied often. This 

intuition is confirmed by results, which show that the 

top-down algorithm is significantly better than other 

heuristics. Since the remaining algorithms do not rely 

so much on the downward pruning, they have to 

perform an exponential number of checks. We can 

also observe a clear impact of m when m ≈ nG/2 incurs 

the highest cost. 

 

VI. CONCLUSIONS 

In this paper, we considered a new type of 

potential attackers in collaborative data publishing – a 

coalition of data providers, called m-adversary. To 

prevent privacy disclosure by any m-adversary we 

showed that guaranteeing m-privacy is enough. We 

presented heuristic algorithms exploiting equivalence 

group monotonicity of privacy constraints and 

adaptive ordering techniques for efficiently checking 

m-privacy. We introduced also a provider-aware 

anonymization algorithm with adaptive m-privacy 

checking strategies to ensure high utility and m-

privacy of anonymized data. Our experiments 

confirmed that our approach achieves better or 

comparable utility than existing algorithms while 

ensuring m-privacy efficiently. There are many 

remaining research questions. Defining a proper 

privacy fitness score for different privacy constraints 

is one of them. It also remains a question to address 

and model the data knowledge of data providers when 

data are distributed in a vertical or ad-hoc fashion. It 

would be also interesting to verify if our methods can 

be adapted to other kinds of data such as set-valued 

data. 
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