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I. INTRODUCTION 

 

Fuzzy set was introduced by Zadeh [15].Kramosil and Michalek [6] introduced the notion of a fuzzy metric 

space, George and Veermani [4]modified the notion of fuzzy metric spaces with the help of continuous t-norms. 

Grabiec[3],Subramanyam[13], Vasuki[14], Pant and Jha [9]obtained some analogous results proved by 

Balasubramaniam [1] et al. Subsequently, it was developed extensively by many authors and used in various 

fields. Jungck [5] introduced the notion of compatible maps for a pair of self maps.George and Veermani [4], 

Sessa [11] initiated the tradition of improving commutative condition in fixed point theorems by introducing the 

notion of weak commuting property. Further Jungck and Rhoades [5] gave a more generalized condition defined 

as compatibility in metric spaces. Jungck and Rhoades [5] also introduced the concept of weakly compatible 

maps.Malhotra [7] proved a common fixed point theorem in fuzzy metric spaces for occasionally weakly 

compatible mappings with integral type in equality by reducing its minimum value. In this paper we prove a 

common fixed point theorem for selfmaps on fuzzy metric spaces for occasionally weakly compatible mappings 

with integral type inequality involving some special type of Lebesgue integrable functions (Definition [2.1]). 

 

  

Definition 1.1 :( Zadeh.L.A. [14]) A fuzzy set A in a nonempty set X is a function with domain X and values in 

 0,1 .  

Definition 1.2: ( Schweizer.B. and Sklar. A. [9]) A function  ∗ ∶  0,1  ×   0,1 →  0,1   is said to be a 

continuous t-norm if ∗ satisfies the following conditions: 

For 𝑎, 𝑏, 𝑐, 𝑑 ∈  0,1  

(i) ∗ is commutative and associative 

(ii) ∗ is continuous 

(iii) 𝑎 ∗ 1 = 𝑎 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎 ∈ [0,1] 

(iv) 𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑 𝑤𝑕𝑒𝑛𝑒𝑣𝑒𝑟 𝑎 ≤ 𝑐 𝑎𝑛𝑑 𝑏 ≤ 𝑑  
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Definition 1.3: (Kramosil. I. and Michalek. J. [5]) A triple (𝑋, 𝑀,∗) is said to be a fuzzy metric space (FM 

space, briefly) if X is a nonempty set, ∗ is a continuous t-norm and M  is a fuzzy set on 𝑋2 × [0,∞)  satisfying 

the following conditions: 

For  𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝑠, 𝑡 > 0. 

(i) 𝑀 𝑥, 𝑦, 𝑡 > 0, 𝑀 𝑥, 𝑦, 0 = 0 

(ii) 𝑀 𝑥, 𝑦, 𝑡 =  1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 =  𝑦. 

(iii) 𝑀(𝑥, 𝑦, 𝑡) = 𝑀 (𝑦, 𝑥, 𝑡) 

(iv) 𝑀(𝑥, 𝑦, 𝑡) ∗ 𝑀(𝑦, 𝑧, 𝑠) ≤ 𝑀(𝑥, 𝑧, 𝑡 +  𝑠) 

(v) 𝑀 𝑥, 𝑦,∙ :  0,∞ ⟶  0,1  is continuous. 

Then  𝑀 is called a fuzzy metric space on X.  

The function 𝑀(𝑥, 𝑦, 𝑡) denotes the degree of nearness between 𝑥 and 𝑦 with respect to t. 

Definition 1.4:(Jungck.G. and  Rhoades.B.E. [4]) Two self mappings 𝑓  and 𝑔  of a fuzzy metric space 

(𝑋, 𝑀,∗) are called compatible if lim𝑛→∞ 𝑀 𝑓𝑔𝑥𝑛 , 𝑔𝑓𝑥𝑛 , 𝑡 = 1 whenever {𝑥𝑛 } is a sequence in 𝑋  such that 

lim𝑛→∞𝑓𝑥𝑛 = lim𝑛→∞ 𝑔𝑥𝑛 = 𝑥  for some 𝑥 ∈ 𝑋. 

Definition 1.5:(Cho.Y.J.[1]) Two self mappings 𝑓  and 𝑔  of a fuzzy metric space (𝑋, 𝑀,∗)  are called 

reciprocally continuous on 𝑥 if lim
𝑛→∞

𝑓𝑥𝑛 = 𝑓𝑥 and lim
𝑛→∞

𝑔𝑓𝑥𝑛 = 𝑔𝑥  whenever {𝑥𝑛 } is a sequence in 𝑋 such that 

lim𝑛→∞𝑓𝑥𝑛 = lim𝑛→∞ 𝑔𝑥𝑛 = 𝑥  for some 𝑥 ∈ 𝑋. 

Definition 1.6: (George.A. and Veeramani.P. [3]) Let (𝑋, 𝑀,∗) be a fuzzy metric space.  

Then,  

(i) A sequence {𝑥𝑛 } in 𝑋 is said to be convergent to a point 𝑥 ∈  𝑋                                    if  

lim𝑛→∞ 𝑀 𝑥𝑛  , 𝑥, 𝑡 = 1 ∀ 𝑡 > 0. 

(ii) A sequence {𝑥𝑛 } in 𝑋 is called a Cauchy sequence if  

lim𝑛→∞ 𝑀 𝑥𝑛+𝑝 , 𝑥𝑛 , 𝑡 = 1 ∀ 𝑡 > 0 and  𝑝 = 1,2, … 

(iii) An FM –space in which every Cauchy sequence is convergent is said to be complete. 

Definition 1.7: (Malhotra.S.K.Naveen Verma and Ravindra Sen [6]) Two self maps f and g of a set 𝑋are 

occasionally weakly compatible (owc) iff there is a point 𝑥 in 𝑋 which is a coincidence point of 𝑓 and 𝑔 at 

which 𝑓 and 𝑔   commute.  

Lemma: 1.8:(Mishra.S.N. and Sharma.N.[7]) Suppose (𝑋, 𝑀,∗) is a fuzzy metric space.If  for all 𝑥, 𝑦 ∈

𝑋, 𝑡 > 0 and for a number 𝑘 ∈  0,1 , 𝑀 𝑥, 𝑦, 𝑘𝑡 ≥ 𝑀 𝑥, 𝑦, 𝑡  then 𝑥 = 𝑦. 

Lemma: 1.9:(Jungck.G. and  Rhoades.B.E. [4]) Let 𝑋 be a set and 𝑓, 𝑔 owc self maps of 𝑋.If 𝑓&𝑔  have a 

unique point of coincidence,𝑤 = 𝑓𝑥 = 𝑔𝑥, then 𝑤 is the unique common fixed point of 𝑓  and 𝑔.   
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Notation 1.10: Let Φ = {𝜙; 𝜙: 𝑅+ → 𝑅} such that (1) 𝜙 is Lebesgue integrable 

                                                                                  (2) 𝜖 > 0 ⟹   ∅ 𝑡 𝑑𝑡
𝜖

0
> 0  

Malhotra et.al.[7] proved a common fixed point theorem for four self maps on a fuzzy metric space which 

satisfy an inequality involving a function ∅ ∈ Φ. 

Theorem 1.11: (Malhotra et.al.[7])  Let (𝑋, 𝑀,∗) be a complete fuzzy metric space and let F, G, S and T are 

self–mapping of X. Let the pairs {F,S} and {G ,T} be owc . If there exists 𝑞 ∈ (0,1)  such that 

 

 𝜑(𝑡)𝑑𝑡 ≥
𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0

 𝜑(𝑡)𝑑𝑡
min ⁡{𝑀 𝑆𝑥,𝑇𝑦 ,𝑡 ,𝑀 𝑆𝑥,𝐹𝑥 ,𝑡 ,𝑀 𝐺𝑦 ,𝑇𝑦 ,𝑡 ,𝑀 𝐹𝑥 ,𝑇𝑦 ,𝑡 ,𝑀 𝐺𝑦 ,𝑆𝑥,𝑡 }

0

 

 

for all 𝑥, 𝑦 ∈ 𝑋 and for all 𝑡 >  0, then there exists a unique point 𝑤 ∈  𝑋 such that  

𝐹𝑤 =  𝑆𝑤 =  𝑤 and a unique point 𝑧 ∈  𝑋 such that 𝐺𝑧 =  𝑇𝑧 =  𝑧 Moreover , 𝑧 =  𝑤 , so that there is a 

unique common fixed point of 𝐹, 𝐺, 𝑆 and 𝑇. 
 

II. MAIN RESULT 

 

In this section we introduce a special class of Lebesgue integrable function and use this notion to prove a fixed 

point theorem. 

 

Definition 2.1:Let Ψ = {𝜓:  0,1 →  0,1 } is Lebesgue integrable such that 

                                            𝜓 𝑡 𝑑𝑡
𝛽

𝛼
> 0 for 𝛼 < 𝛽. 

 

Theorem 2.2: Let (𝑋, 𝑀,∗) be a complete fuzzy metric space and let 𝐹, 𝐺, 𝑆 and 𝑇 be self–mappings of 𝑋. Let 

the pairs (𝐹, 𝑆) and (𝐺 , 𝑇) be owc . Suppose there exists 𝜓 ∈ Ψ and 𝑞 ∈  ( 0,1) such that 

 𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

min ⁡{𝑀 𝑆𝑥,𝑇𝑦 ,𝑡 ,𝑀 𝑆𝑥,𝐹𝑥 ,𝑡 ,𝑀 𝐺𝑦 ,𝑇𝑦 ,𝑡 ,𝑀 𝐹𝑥 ,𝑇𝑦 ,𝑡 ,𝑀 𝐺𝑦 ,𝑆𝑥,𝑡 }

0
 (2.2.1) 

 
for all 𝑥, 𝑦 ∈ 𝑋 and for all 𝑡 >  0. 
 
Then  𝐹, 𝐺, 𝑆 and 𝑇 have a unique common fixed point. 

 

Proof:  

Since the pairs (𝐹, 𝑆) and (𝐺 , 𝑇) are owc, there exist 𝑥, 𝑦 ∈ 𝑋 such that 𝐹𝑥 = 𝑆𝑥 and 𝐺𝑦 = 𝑇𝑦. 
Now we claim that 𝐹𝑥 = 𝐺𝑦. 
 
By (2.2.1) 
 

  𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝐹𝑥 ,𝐺𝑦,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

min ⁡{𝑀 𝑆𝑥 ,𝑇𝑦 ,𝑡 ,𝑀 𝑆𝑥,𝐹𝑥 ,𝑡 ,𝑀 𝐺𝑦 ,𝑇𝑦 ,𝑡 ,𝑀 𝐹𝑥 ,𝑇𝑦 ,𝑡 ,𝑀 𝐺𝑦 ,𝑆𝑥,𝑡 }

0
 

 

                                                   =  𝜓 𝑠 𝑑𝑠
min ⁡{𝑀 𝐹𝑥 ,𝐺𝑦,𝑡 ,𝑀 𝐹𝑥 ,𝐹𝑥 ,𝑡 ,𝑀 𝐺𝑦,𝐺𝑦 ,𝑡 ,𝑀 𝐹𝑥 ,𝐺𝑦,𝑡 ,𝑀 𝐺𝑦 ,𝐹𝑥 ,𝑡 }

0
 

 

                                                    =  𝜓 𝑠 𝑑𝑠
min ⁡{𝑀 𝐹𝑥 ,𝐺𝑦,𝑡 ,1,1,𝑀 𝐹𝑥 ,𝐺𝑦,𝑡 ,𝑀 𝐺𝑦 ,𝐹𝑥 ,𝑡 }

0
 

 

⇒    𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝐹𝑥 ,𝐺𝑦,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

𝑀(𝐹𝑥,𝐺𝑦 ,𝑡)

0
   

 
 

⇒  𝜓 𝑠 𝑑𝑠
𝑀(𝐹𝑥 ,𝐺𝑦,𝑡)

0
≥  𝜓 𝑠 𝑑𝑠 ≥

𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

𝑀(𝐹𝑥 ,𝐺𝑦 ,𝑡)

0
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⇒  𝜓 𝑠 𝑑𝑠 =
𝑀(𝐹𝑥 ,𝐺𝑦,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

𝑀(𝐹𝑥 ,𝐺𝑦,𝑡)

0
=  𝜓 𝑠 𝑑𝑠 +

𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

𝑀(𝐹𝑥 ,𝐺𝑦,𝑡)

𝑀(𝐹𝑥 ,𝐺𝑦,𝑞𝑡 )
   

 

⇒ 𝜓 𝑠 𝑑𝑠
𝑀(𝐹𝑥 ,𝐺𝑦,𝑡)

𝑀(𝐹𝑥 ,𝐺𝑦,𝑞𝑡 )
= 0  

 
⇒𝑀 𝐹𝑥, 𝐺𝑦, 𝑞𝑡 = 𝑀 𝐹𝑥, 𝐺𝑦, 𝑡                         (∴ 𝜓 ∈ Ψ)  

 

Hence it follows that 𝑀 𝐹𝑥, 𝐺𝑦, 𝑞𝑡 = 𝑀 𝐹𝑥, 𝐺𝑦, 𝑡  for every 𝑡 > 0. 
 

Consequently 𝑆𝑥 = 𝐹𝑥 = 𝐺𝑦 = 𝑇𝑦                                                     (2.2.2) 

Suppose that ∃ 𝑧 ∈ 𝑋 ∋ 𝐹𝑧 = 𝑆𝑧. Then following the above argument we get that  

𝐹𝑧 = 𝑆𝑧 = 𝐺𝑦 = 𝑇𝑦.  
∴ 𝐹𝑥 = 𝐹𝑧 

Write 𝑤 = 𝐹𝑥 = 𝑆𝑥. 
Since (𝐹, 𝑆) is owc, 𝐹𝑥 = 𝑆𝑥 ⇒ 𝐹𝑆𝑥 = 𝑆𝐹𝑥 ⇒ 𝐹𝑤 = 𝑆𝑤 

Now replacing 𝑥 by 𝑤 in (2.1.1) following the argument mentioned above and we get  

𝐹𝑤 = 𝑆𝑤 = 𝐺𝑦 = 𝑇𝑦.  

∴ 𝐹𝑤 = 𝑆𝑤 = 𝐺𝑦 = 𝑇𝑦 = 𝐹𝑥 = 𝑆𝑥. 
 

∴ 𝐹𝑤 = 𝐹𝑥 = 𝑤 = 𝑆𝑥 = 𝑆𝑤. 
⇒𝐹𝑤 = 𝑤 = 𝑆𝑤. 
Hence 𝑤 is a common fixed point of 𝐹 and 𝐺. 
From (2.2.2) we have 𝐺𝑦 = 𝑇𝑦 = 𝑤,followingthe above argument follows that 𝐺𝑤 = 𝑇𝑤 = 𝑤. 
Thus 𝑤 is a common fixed point of 𝐹, 𝑆, 𝐺 and 𝑇. 
 
Uniqueness : Let 𝑤&𝑣 be ∋ 𝐹𝑤 = 𝑆𝑤 = 𝐺𝑤 = 𝑇𝑤 = 𝑤 and 𝐹𝑣 = 𝑆𝑣 = 𝐺𝑣 = 𝑇𝑣 = 𝑣. 
 
By (2.2.1) 
 

 𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝐹𝑤,𝐺𝑣,𝑞𝑡 )

0

 𝜓 𝑠 𝑑𝑠
min ⁡{𝑀 𝑆𝑤 ,𝑇𝑣,𝑡 ,𝑀 𝑆𝑤 ,𝐹𝑤 ,𝑡 ,𝑀 𝐺𝑣,𝑇𝑣,𝑡 ,𝑀 𝐹𝑤 ,𝑇𝑣,𝑡 ,𝑀 𝐺𝑣,𝑆𝑤 ,𝑡 }

0

 

 

 𝜓 𝑠 𝑑𝑠 ≥
𝑀 𝑤,𝑣,𝑞𝑡  

0
  𝜓 𝑠 𝑑𝑠

min  𝑀 𝑤,𝑣,𝑡 ,1,1𝑀 𝑤,𝑣,𝑡 ,𝑀 𝑣,𝑤,𝑡  

0
=  𝜓 𝑠 𝑑𝑠

𝑀 𝑤,𝑣,𝑡 

0
 

 
 

⇒ 𝜓 𝑠 𝑑𝑠 ≥  𝜓 𝑠 𝑑𝑠
𝑀 𝑤,𝑣,𝑡 

0
.

𝑀 𝑤,𝑣,𝑞𝑡  

0
 

 

⇒ 𝜓 𝑠 𝑑𝑠 ≥  𝜓 𝑠 𝑑𝑠 ≥  𝜓 𝑠 𝑑𝑠
𝑀 𝑤,𝑣,𝑡 

0

𝑀 𝑤,𝑣,𝑞𝑡  

0
.

𝑀 𝑤,𝑣,𝑡 

0
 

 

⇒ 𝜓 𝑠 𝑑𝑠
𝑀 𝑤,𝑣,𝑡 

0
=  𝜓 𝑠 𝑑𝑠

𝑀 𝑤,𝑣,𝑞𝑡  

0
 

⇒ 𝑀 𝑤, 𝑣, 𝑞𝑡 = 𝑀 𝑤, 𝑣, 𝑡  ∀ 𝑡 > 0. 
⇒ 𝑤 = 𝑣. 
Hence common fixed point of 𝐹, 𝐺, 𝑆 and 𝑇 is unique. 

 
Theorem 2.3: Let (𝑋, 𝑀,∗) be a complete fuzzy metric space and let 𝐹, 𝐺, 𝑆 and 𝑇 be self–mapping of 𝑋. Let the 

pairs (𝐹, 𝑆) and (𝐺 , 𝑇) be owc . If there exists  𝑞 ∈  ( 0,1) such that 

 

 𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

ϕ(min  𝑀 𝑆𝑥,𝑇𝑦 ,𝑡 ,𝑀 𝑆𝑥,𝐹𝑥 ,𝑡 ,𝑀 𝐺𝑦 ,𝑇𝑦 ,𝑡 ,𝑀 𝐹𝑥 ,𝑇𝑦 ,𝑡 ,𝑀 𝐺𝑦 ,𝑆𝑥,𝑡  )

0
 (2.3.1) 

 
for all 𝑥, 𝑦 ∈ 𝑋 and 𝜙:  0,1 → [0,1] such that 𝜙(𝑡) ≥ 𝑡 for all 0 < 𝑡 < 1 . 
Then  𝐹, 𝐺, 𝑆 and 𝑇 have a unique common fixed point. 

 

Proof : By (2.3.1) 
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  𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

ϕ(min  𝑀 𝑆𝑥,𝑇𝑦 ,𝑡 ,𝑀 𝑆𝑥,𝐹𝑥 ,𝑡 ,𝑀 𝐺𝑦,𝑇𝑦 ,𝑡 ,𝑀 𝐹𝑥,𝑇𝑦 ,𝑡 ,𝑀 𝐺𝑦,𝑆𝑥 ,𝑡  )

0
 

 

                                           =  𝜓 𝑠 𝑑𝑠
ϕ(min  𝑀 𝐹𝑥 ,𝐺𝑦,𝑡 ,𝑀 𝐹𝑥,𝐹𝑥 ,𝑡 ,𝑀 𝐺𝑦 ,𝐺𝑦,𝑡 ,𝑀 𝐹𝑥 ,𝐺𝑦 ,𝑡 ,𝑀 𝐺𝑦,𝐹𝑥 ,𝑡  )

0
 

 

                                           =  𝜓 𝑠 𝑑𝑠
ϕ(min  𝑀 𝐹𝑥 ,𝐺𝑦,𝑡 ,1,1,𝑀 𝐹𝑥 ,𝐺𝑦,𝑡 ,𝑀 𝐺𝑦 ,𝐹𝑥 ,𝑡  )

0
 

                                            

                                            =  𝜓 𝑠 𝑑𝑠
ϕ(𝑀(𝐹𝑥,𝐺𝑦 ,𝑡))

0
 

  

 ⇒  𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝐹𝑥 ,𝐺𝑦,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

ϕ(𝑀(𝐹𝑥,𝐺𝑦 ,𝑡))

0
≥  𝜓 𝑠 𝑑𝑠

(𝑀(𝐹𝑥,𝐺𝑦 ,𝑡))

0
 

 
    

    ⇒  𝜓 𝑠 𝑑𝑠
𝑀(𝐹𝑥,𝐺𝑦 ,𝑡)

0
≥  𝜓 𝑠 𝑑𝑠 ≥

𝑀(𝐹𝑥 ,𝐺𝑦,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

𝑀(𝐹𝑥,𝐺𝑦 ,𝑡)

0
                                       

 

⇒    𝜓 𝑠 𝑑𝑠 =
𝑀(𝐹𝑥 ,𝐺𝑦,𝑡)

0
 𝜓 𝑠 𝑑𝑠

𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0
 

⇒𝑀 𝐹𝑥, 𝐺𝑦, 𝑞𝑡 = 𝑀 𝐹𝑥, 𝐺𝑦, 𝑡  

∴ 𝐹𝑥 = 𝐺𝑦 
Hence result follows from theorem (2.2) 

 

Theorem 2.4: Let (𝑋, 𝑀,∗) be a complete fuzzy metric space and let 𝐹, 𝐺, 𝑆 and 𝑇 be self–mapping of 𝑋. Let the 

pairs (𝐹, 𝑆) and (𝐺 , 𝑇) be owc . If there exists  𝑞 ∈  ( 0,1) such that 

 

 𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

ϕ(𝑀 𝑆𝑥,𝑇𝑦 ,𝑡 ,𝑀 𝑆𝑥,𝐹𝑥 ,𝑡 ,𝑀 𝐺𝑦,𝑇𝑦 ,𝑡 ,𝑀 𝐹𝑥,𝑇𝑦 ,𝑡 ,𝑀 𝐺𝑦,𝑆𝑥 ,𝑡 )

0
 (2.4.1) 

 

for all 𝑥, 𝑦 ∈ 𝑋 and 𝜙:  0,1 5 → [0,1] such that 𝜙(𝑡, 1,1, 𝑡, 𝑡) > 𝑡 for all 0 < 𝑡 < 1 . 
Then  𝐹, 𝐺, 𝑆 and 𝑇 have a unique common fixed point. 

 

Proof : By (2.4.1) 

  𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

ϕ(𝑀 𝑆𝑥,𝑇𝑦 ,𝑡 ,𝑀 𝑆𝑥 ,𝐹𝑥 ,𝑡 ,𝑀 𝐺𝑦,𝑇𝑦 ,𝑡 ,𝑀 𝐹𝑥,𝑇𝑦 ,𝑡 ,𝑀 𝐺𝑦,𝑆𝑥 ,𝑡 )

0
 

 

                                  =  𝜓 𝑠 𝑑𝑠
ϕ(𝑀 𝐹𝑥 ,𝐺𝑦,𝑡 ,1,1,𝑀 𝐹𝑥 ,𝐺𝑦,𝑡 ,𝑀 𝐺𝑦 ,𝐹𝑥 ,𝑡 )

0
 

 

                                   >  𝜓 𝑠 𝑑𝑠
𝑀(𝐹𝑥,𝐺𝑦 ,𝑡)

0
 

 

⇒  𝜓 𝑠 𝑑𝑠
𝑀(𝐹𝑥 ,𝐺𝑦,𝑡)

0
≥  𝜓 𝑠 𝑑𝑠 ≥

𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

𝑀(𝐹𝑥 ,𝐺𝑦 ,𝑡)

0
                                       

 

⇒    𝜓 𝑠 𝑑𝑠 =
𝑀(𝐹𝑥 ,𝐺𝑦,𝑡)

0
 𝜓 𝑠 𝑑𝑠

𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0
 

⇒𝑀 𝐹𝑥, 𝐺𝑦, 𝑞𝑡 = 𝑀 𝐹𝑥, 𝐺𝑦, 𝑡  

∴ 𝐹𝑥 = 𝐺𝑦 
Hence result follows from theorem (2.2) 

 

Theorem 2.5: Let (𝑋, 𝑀,∗) be a complete fuzzy metric space and let 𝐹, 𝐺, 𝑆 and 𝑇 are self–mapping of 𝑋. Let 

the pairs (𝐹, 𝑆) and (𝐺 , 𝑇) be owc . Suppose there exists  𝑞 ∈  ( 0,1) such that 

 

 𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

min  𝑀 𝑆𝑥 ,𝑇𝑦 ,𝑡 ∗𝑀 𝐹𝑥 ,𝑆𝑥,𝑡 ,𝑀 𝐺𝑦 ,𝑇𝑦 ,𝑡 ∗𝑀 𝐹𝑥 ,𝑇𝑦 ,𝑡  

0
 (2.5.1) 

 
for all 𝑥, 𝑦 ∈ 𝑋. Then  𝐹, 𝐺, 𝑆 and 𝑇 have a unique common fixed point. 

 

Proof:  𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

min  𝑀 𝑆𝑥,𝑇𝑦 ,𝑡 ∗𝑀 𝐹𝑥 ,𝑆𝑥,𝑡 ,𝑀 𝐺𝑦 ,𝑇𝑦 ,𝑡 ∗𝑀 𝐹𝑥 ,𝑇𝑦 ,𝑡  

0
 

                                             =  𝜓 𝑠 𝑑𝑠
min  𝑀 𝐹𝑥,𝐺𝑦 ,𝑡 ∗1,1∗𝑀 𝐹𝑥 ,𝐺𝑦 ,𝑡  

0
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                                                              =  𝜓 𝑠 𝑑𝑠
𝑀(𝐹𝑥 ,𝐺𝑦,𝑡)

0
 

 

⇒  𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝐹𝑥 ,𝐺𝑦,𝑞𝑡 )

0
  𝜓 𝑠 𝑑𝑠

𝑀(𝐹𝑥,𝐺𝑦 ,𝑡)

0
 

⇒𝑀 𝐹𝑥, 𝐺𝑦, 𝑞𝑡 = 𝑀 𝐹𝑥, 𝐺𝑦, 𝑡  

∴ 𝐹𝑥 = 𝐺𝑦 
Hence result follows from theorem (2.2) 

Theorem 2.6: Let (𝑋, 𝑀,∗) be a complete fuzzy metric space where ∗ is the min 𝑡 − norm and let 𝐹, 𝐺, 𝑆 and 𝑇 

be self–mapping of  𝑋. Let the pairs (𝐹, 𝑆) and (𝐺 , 𝑇) be owc . Suppose there exists  𝑞 ∈  ( 0,1) such that 

 

 𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

min  𝑀 𝑆𝑥 ,𝑇𝑦 ,𝑡 ∗𝑀 𝐹𝑥 ,𝑆𝑥,𝑡 ,𝑀 𝐺𝑦 ,𝑇𝑦 ,𝑡 ∗𝑀 𝐺𝑦 ,𝑆𝑥,2𝑡 ∗𝑀 𝐹𝑥,𝑇𝑦 ,𝑡  

0
 (2.6.1) 

 
for all 𝑥, 𝑦 ∈ 𝑋. Then  𝐹, 𝐺, 𝑆 and 𝑇 have a unique common fixed point. 

 

Proof: By(2.6.1) 

 

  𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0

 𝜓 𝑠 𝑑𝑠
min  𝑀 𝑆𝑥 ,𝑇𝑦 ,𝑡 ∗𝑀 𝐹𝑥 ,𝑆𝑥,𝑡 ,𝑀 𝐺𝑦,𝑇𝑦 ,𝑡 ∗𝑀 𝐺𝑦 ,𝑆𝑥,2𝑡 ∗𝑀 𝐹𝑥 ,𝑇𝑦 ,𝑡  

0

 

                                                          

                                  =  𝜓 𝑠 𝑑𝑠
min  𝑀 𝐹𝑥 ,𝐺𝑦,𝑡 ∗𝑀 𝐹𝑥,𝑆𝑥 ,𝑡 ,𝑀 𝐺𝑦 ,𝑇𝑦 ,𝑡 ∗𝑀 𝑆𝑥 ,𝑇𝑦 ,𝑡 ∗𝑀 𝑇𝑦 ,𝐺𝑦,𝑡 ∗𝑀 𝐹𝑥 ,𝑇𝑦 ,𝑡  

0
 

                              

 

                              =  𝜓 𝑠 𝑑𝑠
min  𝑀 𝐹𝑥 ,𝐺𝑦,𝑡 ∗1,1∗𝑀 𝐹𝑥 ,𝐺𝑦 ,𝑡 ∗1∗𝑀 𝐹𝑥 ,𝐺𝑦,𝑡  

0
 

 

                                       ≥  𝜓 𝑠 𝑑𝑠
𝑀(𝐹𝑥 ,𝐺𝑦,𝑡)

0
 

 

⇒  𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝐹𝑥 ,𝐺𝑦,𝑞𝑡 )

0
  𝜓 𝑠 𝑑𝑠

𝑀(𝐹𝑥,𝐺𝑦 ,𝑡)

0
 

 

⇒  𝜓 𝑠 𝑑𝑠
𝑀(𝐹𝑥 ,𝐺𝑦,𝑡)

0
≥  𝜓 𝑠 𝑑𝑠 ≥

𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

𝑀(𝐹𝑥 ,𝐺𝑦 ,𝑡)

0
                                       

 

⇒    𝜓 𝑠 𝑑𝑠 =
𝑀(𝐹𝑥 ,𝐺𝑦,𝑡)

0
 𝜓 𝑠 𝑑𝑠

𝑀(𝐹𝑥,𝐺𝑦 ,𝑞𝑡 )

0
 

⇒𝑀 𝐹𝑥, 𝐺𝑦, 𝑞𝑡 = 𝑀 𝐹𝑥, 𝐺𝑦, 𝑡  

∴ 𝐹𝑥 = 𝐺𝑦 
Hence result follows from theorem (2.2) 
 
Theorem 2.7: Let (𝑋, 𝑀,∗) be a complete fuzzy metric space and let 𝐹, 𝐺, 𝑆 and 𝑇 be self–mappings of 𝑋. Let 

the pairs (𝐹, 𝑆) and (𝐺 , 𝑇) be owc . If there exists  𝑞 ∈  ( 0,1) such that 

 

 𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝑆𝑥,𝑆𝑦 ,𝑞𝑡 )

0
 𝜓 𝑠 𝑑𝑠

𝛼𝑀 𝐹𝑥,𝐹𝑦 ,𝑡 +𝛽 min  𝑀 𝐹𝑥 ,𝐹𝑦 ,𝑡 ,𝑀 𝑆𝑥 ,𝐹𝑥 ,𝑡 ,𝑀 𝑆𝑦 ,𝐹𝑦 ,𝑡  

0
 (2.7.1) 

 
for all 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0 where 𝛼, 𝛽 > 0, 𝛼 + 𝛽 ≥ 1, then  𝐹, 𝐺, 𝑆 and 𝑇 have a unique common fixed point. 

Proof : Let the pair (𝐹, 𝑆) be owc. 

 

⇒ ∃ 𝑥 ∈ 𝑋 ∋ 𝐹𝑥 = 𝑆𝑥. 
Suppose ∃ 𝑦 ∈ 𝑋 ∋ 𝐹𝑦 = 𝑆𝑦. 
 

  𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝑆𝑥,𝑆𝑦 ,𝑞𝑡 )

0

 𝜓 𝑠 𝑑𝑠
𝛼𝑀 𝐹𝑥 ,𝐹𝑦 ,𝑡 +𝛽 min  𝑀 𝐹𝑥 ,𝐹𝑦 ,𝑡 ,𝑀 𝑆𝑥,𝐹𝑥 ,𝑡 ,𝑀 𝑆𝑦 ,𝐹𝑦 ,𝑡  

0

 

                                             =  𝜓 𝑠 𝑑𝑠
𝛼𝑀 𝑆𝑥 ,𝑆𝑦 ,𝑡 +𝛽 min  𝑀 𝑆𝑥,𝑆𝑦 ,𝑡 ,1,𝑀 𝑆𝑥,𝑆𝑦 ,𝑡  

0
 

 

                                                           =  𝜓 𝑠 𝑑𝑠
𝛼𝑀 𝑆𝑥,𝑆𝑦 ,𝑡 +𝛽𝑀(𝑆𝑥 ,𝑆𝑦 ,𝑡)

0
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                                                   =  𝜓 𝑠 𝑑𝑠
(𝛼+𝛽)𝑀 𝑆𝑥 ,𝑆𝑦 ,𝑡 

0
   

 

 𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝑆𝑥,𝑆𝑦 ,𝑞𝑡 )

0
  𝜓 𝑠 𝑑𝑠

(𝛼+𝛽)𝑀 𝑆𝑥 ,𝑆𝑦 ,𝑡 

0
>  𝜓 𝑠 𝑑𝑠

(𝛼+𝛽)𝑀 𝑆𝑥 ,𝑆𝑦 ,𝑡 

0
 

 

⇒  𝜓 𝑠 𝑑𝑠 ≥
𝑀(𝑆𝑥,𝑆𝑦 ,𝑞𝑡 )

0
  𝜓 𝑠 𝑑𝑠

𝑀(𝑆𝑥,𝑆𝑦 ,𝑡)

0
 

⇒𝑀 𝑆𝑥, 𝑆𝑦, 𝑞𝑡 = 𝑀 𝑆𝑥, 𝑆𝑦, 𝑡  

∴ 𝑆𝑥 = 𝑆𝑦 
∴ F𝑥 = 𝐹𝑦 

⇒ 𝐹 and 𝑆 have a unique common fixed point. 
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