Research & Reviews: Journal of Chemistry

A Compact V205–W03/Tio2 Monolith Catalyst for Vessel De–Nox Application

Lu Zhou*

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, PR China KAUST Catalysis Center, King Abdullah University of Science & Technology, Thuwal, Saudi Arabia

RESEARCH ARTICLE

Received date: 11/09/2015 Accepted date: 28/09/2015 Published date: 30/09/2015

*For Correspondence

Lu Zhou, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, PR China, Tel:+966128084383

E-mail: Lu.Zhou@kaust.edu.sa

Keywords: SCR, Vessel, Low temperature, TiO2, Paper honeycomb.

ABSTRACT

Using a corrugated paper as the substrate, a novel compact monolith catalyst assigned as V205-W03/TiO2 for vessel De-NOx application was prepared by wash coating method. The prepared corrugated paper catalyst exhibited comparable NO conversion but lower S02/S03 conversion than that of commercial catalyst at low temperature of 200 and 250°C.

INTRODUCTION

In order to meet the requirement of International Maritime Organization (IMO) announced NOx Tier III regulations on vessels, the selective catalytic reduction (SCR) with NH_3 at low temperature <250 °C has been widely studied over various catalysts ^[1-2]. Among those catalysts, the V_2O_5 - WO_3 /TiO₂ is the most representative catalyst ^[3].

For mobile vessel NH_3 -SCR system, it is obvious that, not only the good reactivity but also compact property like low bulk density is required for the catalyst. However, surprisingly, to our knowledge, most literatures focused only the catalysts reactivity performance, but neglecting the compact issue of the catalysts system. In light of these, a commercial corrugated paper is applied here as the substrate to prepare V_2O_5 -WO $_3$ /TiO $_2$ catalyst by wash-coating method. The catalyst performance was evaluated at both 200 and 250°C to investigate its application possibility for the vessel NH_3 -SCR process.

EXPERIMENTAL

Catalysts Preparation

A commercial corrugated paper (Dongguan Chunhing paper Co., Ltd) was used as a substrate in **Figure 1(a)**. This corrugated paper has a 790 m²/m³ contact area per volume, which is comparable to commercial honeycomb catalyst, whereas the bulk density is only 60% of the commercial honeycomb catalyst value. The composition of this material is SiO₂, Al₂O₃, MgO and CaO. A wash–coating method with the slurry containing commercial WO₃-TiO₂ and Ammonium vanadium oxide was employed to prepare catalysts in this study. The V₂O₅ loading was controlled at 3.8 wt. %. The prepared sample was calcined at 450 °C for 5 h.

As a control sample, a commercial $V_2O_5 - WO_3/TiO_2$ honeycomb catalyst with 3.8 wt. % V_2O_5 loading shown in **Figure 1(b)** was provided by Jiangsu Longyuan Catalyst Co., Ltd.

Catalysts Characterization

The elemental composition was determined by the AES–ICP in a Thermo–Electron model 3580 instrument. The XRD was recorded on a Bruker D8 Advanced A25 diffractometer. SEM images were taken by the FEI Quanta 200. The XPS analyses were conducted on a MultiLab ESCA 2000 X-ray photoelectron spectrometer with Mg–K α radiation at 300 W.

Catalysts Reactivity

The catalysts evaluation was performed over a fixed bed reactor. A 57.6 mL prepared corrugated paper catalyst or commercial honeycomb catalyst was loaded into a reactor with 0.D.60.5 mm and I.D. 52.9 mm. The catalyst performance is evaluated with both NO conversion and SO_2/SO_3 conversion. For the De-NOx activity test, a stimulated gas composed of 180 ppm NH₃, 180 ppm NO, 7% O_2 , 10% H₂O with N₂ balance was applied at SV 28125 h⁻¹. For the SO_2/SO_3 oxidation test, 500 ppm SO_2 , 4% O_2 , 10% H₂O with N₂ balance gas was applied at SV 7734 h⁻¹.

Figure 1. Image and size profile (a) Paper corrugated support; (b) Honeycomb catalysts.

The rate constant K_{NO} is used here to compare prepared corrugated paper catalyst and commercial honeycomb catalyst ^[4]:

$$K_{NO} = -\frac{SV}{A_{\rm P}} \times Ln(1 - \frac{\eta}{100})$$
 (1)

Where, A_{p} is the contact area per volume, η is the NO conversion, SV is the space velocity.

RESULTS AND DISCUSSION

Characterization of the Fresh Catalyst

The prepared catalyst in **Figure 2(a)** showed the similar XRD pattern as that of commercial WO_3 -TiO₂ powder in **Figure 2(b)**, while negligible V_2O_5 peak could be detected. This implied that the vanadium oxides are well dispersed. The WO_3 refraction peak was only shown after calcining the commercial WO_3 -TiO₂ powder at 1100°C to transform the anatase TiO₂ to rutile TiO₂ in **Figure 2(c)**.

Figure 2. XRD over prepared catalyst (a) prepared catalyst in this study (b) commercial TiO₂-WO₃ (c) calcine b at 1100°C.

XPS results in Figure 3 further explained the existence of anatase TiO₂ and WO₃ over prepared catalyst. The existence of

e-ISSN:2319-9849 p-ISSN:2322-00

45% V⁵⁺, 45% V⁴⁺ and 10% V³⁺ were detected also. According to Youn *et al.*^[5], the existence of V³⁺ and V⁵⁺ in XPS most likely form the polymerized species, while the V⁴⁺ may result in both isolated and polymerized surface vanadium species. Due to the higher liability of lattice oxygen atoms, the polymeric vanadium species were reported to be 10 times more active than the monomeric species at low temperature 200–250 °C. The influence of the V state over the De-NOx activity at lower temperature will be discussed in detail in our other study.

Effect of Coating Thickness

The influence of coated catalyst layer thickness on the De–NOx activity was investigated in **Figure 4**. At both 200 and 250 °C, the De-NOx activity increased significantly with increasing the catalyst layer thickness until 0.2 mm. Continuing increase the catalyst layer thickness from 0.2 to 0.4 mm, negligible improvement of De-NOx activity was evidenced. This suggested that the De-NOx reaction was confined into a narrow surface layer. Yang *et al.* reported that over a honeycomb monolith support wash coated SCR catalyst, the activity increased with increasing the coating thickness and reached at 0.11 mm thickness as comparable as that of the 100% active components-molded catalyst ^[6].

Reactivity Comparison between Prepared Catalyst and Commercial Catalyst

Figure 5 showed the performance comparison results in terms of K_{N0} and SO_2/SO_3 conversion over corrugated paper coated catalyst (catalysts layer thickness 0.2×2 mm) and commercial extruded honeycomb catalyst (catalysts layer thickness 0.8 mm). The prepared corrugated paper catalyst exhibited comparable NO conversion but lower SO_2/SO_3 conversion than that of commercial catalyst. It is known that, the reduction of NO depends mainly on the external geometric surface area and therefore is little influenced by the change of the catalyst layer thickness. But, the conversion of SO_2 to SO_3 occurs in the whole catalytic volume and thus can be reduced by decreasing the thickness of the active phase layer ^[7]. However, we must notice that the V_2O_5 -WO₃/TiO₂ catalyst is weak in the presence of SO_2 in the temperature range of 200 and 250 °C. And further research to improve its resistance against SO₂ is under progress by modifying the catalysts with Mo.

Figure 5. The De-NOx performance comparison between prepared and commercial catalysts.

CONCLUSIONS

The compact issue of the De–NOx catalyst for vessel is always neglected by many researchers, a novel catalyst $V_2O_5 - WO_3/TiO_2$ based on the corrugated paper support with low bulk density but good reactivity was proposed in this study. With increasing the coated catalyst layer until 0.2 mm, the De-NOx activity increases significantly. Comparing with a commercial extruded honeycomb catalyst with 0.8 mm catalyst layer thickness, the prepared catalyst in this study with 0.2 × 2 mm catalyst layer thickness showed better performance in terms of $K_{_{NO}}$ and SO₂/SO₃ conversion.

REFERENCES

- 1. Zhenping Zhu, Zhenyu Liu, Shoujun Liu, Hongxian Niu, Tiandon Hu, et al. NO reduction with NH₃ over an activated carbonsupported copper oxide catalysts at low temperatures. Appl Catal B 2000; 26: 25–35.
- 2. Gongshin Qi, Ralph T. Yang. Performance and kinetics study for low-temperature SCR of NO with NH₃ over MnOx–CeO₂ catalyst. J Catal 2003; 217: 434–441.
- 3. Liang Chen, Junhua Li, Maofa Ge. Promotional Effect of Ce-doped V₂O₅-WO₃/TiO₂ with Low Vanadium Loadings for Selective Catalytic Reduction of NOx by NH₃. J Phys Chem C 2009; 113: 21177–21184.
- 4. https://www.nmri.go.jp/power-sys/center/niki/paper/Full_Paper_No_228_M_1.pdf
- 5. Seunghee Youn, Soyeon Jeong, Do Heui Kim. Effect of oxidation states of vanadium precursor solution in V_2O_5 /TiO₂ catalysts for low temperature NH₃ selective catalytic reduction. Catal Today 2014; 232: 185–191.
- 6. Juan Yang, Hongtao Ma, Yo Yamamoto, Jian Yu, Guangwen Xu, et al. SCR catalyst coated on low-cost monolith support for flue gas denitration of industrial furnaces. Chem Eng J 2013; 230: 513–521.
- 7. Enrico Tronconi, Alessandra Beretta, Ahmed S. Elmi, Pio Forzatti, Stefano Malloggi, et al. A complete model of scr monolith reactors for the analysis of interacting NOx reduction and SO₂ oxidation reactions. Chem Eng Sci 1994; 49: 4277–4287.