

 ISSN(Online): 2319-8753

 ISSN (Print): 2347-6710

International Journal of Innovative Research in Science,

Engineering and Technology
(An ISO 3297: 2007 Certified Organization)

Vol. 6, Issue 10, October 2017

Copyright to IJIRSET

Congestion Control Techniques in Transport

Layer for Wired Connections

Sweeti Sah, Aman Verma, Ghanshaym Chaurasia, Jitendra Kurmi
*

BBAU, Vidya Vihar Raibareily Road Lucknow, India

Abstract: This paper presents the comparative analysis of TCP Congestion Control Techniques including Tahoe, Reno,

New Reno, SACK, Vegas and how these techniques different from each other. When any packet is being lost or

timeout occurs, these techniques come into role and what is the effect on throughput, efficiency, performance when

compared with TCP Vegas.

Keywords: Efficiency, Throughput, TCP tahoe, TCP reno, TCP new reno, TCP sack, TCP vegas

I. INTRODUCTION

TCP is connection oriented end to end transmission protocol. Reliability of packet is ensured by receiving the

acknowledgment segment within the timeout interval by the receiver node. Packet loss can be because of the delay,

timeout, buffer overflow and etc. We assume the loss due to network is minimal but due to buffer overflow is more at

router [1]. So these techniques are introduced to deal with congestion and how they react and take appropriate action

and improve throughput, efficiency. There are few components:

Slow Start
The congestion window start with size = 1 and grows on exponentially until it reaches it threshold value.

Additive Increase Multiplicative Decrease (AIMD)
When congestion window size reaches threshold value then it decreases the congestion window multiplicatively further
do linear increment. Fast retransmit and fast recovery are other two components.

TCP Tahoe
Suggested by Van Jacobson in 1988 [1]. Start with slow start mechanism, congestion window size = 1. Network

capacity can be determined by congestion window [1]. As we send data packet we get an acknowledgement then

increment the congestion window size and keep on sending the data until reaches threshold value and move into

congestion avoidance phase, there it keep on sending the data and after getting an acknowledgment it just increment

congestion window = congestion window +1/ congestion window and we keep on sending unless loss or time out

occurs. After getting three duplicate acknowledgement it moves into Fast Retransmit state and send the missing

packet. Set the threshold value as congestion window/2 and congestion window = 1, move to slow start phase. In case

of timeout in slow start and congestion avoidance phase, it moves into Retransmission timeout phase, when all

acknowledgement is received from retransmission timeout phase to slow state phase for whatever packet is being send.

The process repeat and so on (Fig. 1).

TCP Reno
First few steps of TCP Reno are same as TCP Tahoe. When it is in Fast Retransmit state [2], it moves immediately to

Fast Recovery state and set threshold = congestion window/2 and congestion window = threshold, after that sends

missing packet (Fig. 2).

 ISSN(Online): 2319-8753

 ISSN (Print): 2347-6710

International Journal of Innovative Research in Science,

Engineering and Technology
(An ISO 3297: 2007 Certified Organization)

Vol. 6, Issue 10, October 2017

Copyright to IJIRSET

Fig. 1. TCP Tahoe.

From Fast Recovery state after receiving duplicate acknowledgment, it increases congestion window = congestion

window +1 and keep on sending the data and move to congestion avoidance phase when there are no duplicate

acknowledgements left by setting congestion window = threshold.

 Fig. 2. TCP Reno.

TCP New Reno

It extends fast Recovery state phase and remain in Fast Recovery state until all data in pipe before detecting three

duplicate acknowledgement are acknowledged [3]. Able to avoid the problem of multiple packet loss problem.

 ISSN(Online): 2319-8753

 ISSN (Print): 2347-6710

International Journal of Innovative Research in Science,

Engineering and Technology
(An ISO 3297: 2007 Certified Organization)

Vol. 6, Issue 10, October 2017

Copyright to IJIRSET

TCP Sack

It report non continuous block of data. After the detection of packet loss, more than one lost packets can sent in one

Round Trip Time. Acknowledgement of packet is done selectively for maximum utilization. Whenever the sender

enters into Fast Recovery state, a variable will be initialized which will estimate how much data is outstanding in the

network. It will set congestion window as half the current size. For every acknowledgement it receives it reduces the

pipe by one and retransmit a segment and increment by one. Whenever the pipe goes smaller than congestion window.

It will check which segment is not received and send them again. If there are no segment outstanding then it will send a

new packet [4,5]. Thus in one RTT more than one segment can be send.

TCP Vegas

It is proactive in nature. It detects early packet loss. It is more efficient than all the above mentioned and also

overcomes the problem of requiring enough duplicate acknowledgements to detect packet loss. It does not wait for

three duplicate acknowledgement [6] to send the lost packet. It keeps the track of all the segment that is being send and

also calculate the estimation of Round Trip Time by keeping the track that how much time it is going to take to receive

an acknowledgement back.

TCP Vegas is different compared to other implementation during Congestion Avoidance phase. Instead of detecting the

congestion by loss of segment, it detect by decreasing sending rate compared to expected rate as a result of large

queues that is building inside the routers. It uses a variation of Wang and Crowcroft; s Tri-S scheme [6].

Comparision

Comparision for TCP Tahoe, TCP Reno, TCP New Reno, TCP New Reno, TCP Sack and TCP Vegas as shown in

Table 1.

 Solution Problem

TCP

TAHOE

Slow Start and Congestion Complete Timeout Interval to detect Packet Loss

Avoidance Cumulative ACK

Increase window size Cwnd = 1 when packet loss

Fast Retransmit Inefficient

Detects Congestion Pipeline emptied

TCP

RENO

Cwnd = Cwnd/2 Inefficient for Multiple

Immediate ACK Packet Loss

Packet loss is detected earlier, whenever there is three

duplicate ack, i.e. the sign of one packet loss. After Fast

Retransmit state, it enters into Fast Recovery state.

Pipeline is full Efficient than Tahoe

TCP

NEW

RENO

Detect Multiple Packet Loss Takes one RTT (Round Trip Time) to detect one packet loss

Extends Fast Recovery Phase until all
data in pipe before detecting three duplicate

ACK are acked.

TCP

SACK

Retransmission of more than one lost packet per RTT. Not Easy

Not acknowledged cumulatively but selectively.

Sender retransmit only the segments that have actually

been lost.

TCP

VEGAS

Overcomes the problem of getting three duplicate ACK
for One packet loss. Cannot Compete with more aggressive TCP Reno connection

Proactive Rerouting path may change propagation delay

Efficient Adjust sending rate

Detects Congestion before Packet Loss Performance may degrade in asymmetric network

Detects Multiple Packet Loss faster Treats all packet loss as Random loss

Table 1. Comparision for TCP Tahoe, TCP Reno, TCP New Reno, TCP New Reno, TCP Sack and TCP Vegas.

 ISSN(Online): 2319-8753

 ISSN (Print): 2347-6710

International Journal of Innovative Research in Science,

Engineering and Technology
(An ISO 3297: 2007 Certified Organization)

Vol. 6, Issue 10, October 2017

Copyright to IJIRSET

II. PROPOSED SOLUTION

The proposed solutions can be implemented using ns2. The throughput and Efficiency of TCP Vegas can be improved

when symmetrical network is used and by creating an algorithm that could distinguish between packet loss and random

loss. In the algorithm of TCP Vegas there is a calculation of Expected Sending Rate and Actual Sending rate.

Additionally we can calculate the time of Actual Sending the data packet and estimating the Expected Time of sending

and receiving the data packet when it stored in buffer.

III. CONCLUSION

Hence TCP Vegas is more efficient than TCP Tahoe, Reno, New Reno, Sack by improving the throughput as it detect

the packet loss before it occur and extending the re-transmission mechanism of RENO. TCP Vegas do not waste

bandwidth by transmitting too high at data rate. And also when connection starts TCP Vegas has no idea of available

bandwidth.

REFERENCES

[1] V. Jacobson, “Congestion Avoidance and Control”, SIGCOMM Symposium no Communication Architecture and protocols.

[2] V. Jacobson, “Modified TCP Congestion Control and Avoidance Alogrithms”, Technical Report, 1990.

[3] S. Floyd, T. Henderson, “The New- Reno Modification to TCP’s Fast Recovery Algorithm”, RFC 2582, 1999.
[4] O. Ait-Hellal, E. Altman, “Analysis of TCP Reno and TCP Vegas”, 1997.

[5] K. Fall, S. Floyd, “Simulation Based Comparison of Tahoe, Reno and SACK TCP”, 1996.

[6] LS. Brakmo, LL. Peterson, “TCP Vegas: End to End Congestion Avoidance on a Global Internet”, IEEE Journal on Selected Areas in
Communication, vol.13, pp.1465-1490, 1995.

