
98RRJSMS| Volume 2 | Issue 1 | June, 2016

Research & Reviews: Journal of Statistics and 
Mathematical Sciences

INTRODUCTION
Many authors in the last decades studied nonlocal problems of ordinary differential equations, the reader is referred to [1-

7], and references therein. Also the theory of stochastic differential equations, random fixed point theory, existence of solutions 
of stochastic differential equations by using successive approximation method and properties of these solutions have been 
extensively studied by several authors, especially those contain the Brownian motion as a formal derivative of the Gausian white 
noise, the Brownian motion W (t), t ∈ R, is defined as a stochastic process such that

W (0) = 0; E(W (t)) = 0,  E(W (t))2 = t

and [W (t1) W (t2)] is a Gaussian random variable for all t1, t2 ∈ R. The reader is referred to [8,9] and [10-16] and references therein.

Here we are concerned with the stochastic differential equation

dX(t) = f (t, X(t))dt + g(t)dW (t),  t ∈ (0, T ] (1)

with the nonlocal random initial condition
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where X0 is a second order random variable independent of the Brownian motion W (t) and ak are positive real integers. The 
existence of a unique mean square solution will be studied. The continuous dependence on the random data X0 and the non-
random data ak will be established. The problem (1) with the integral condition will be considered.
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INTEGRAL REPRESENTATION
Let C = C(I, L2( Ω)) be the class of all mean square continuous second order stochastic process with the norm
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Throughout the paper we assume that the following assumptions hold

(H1) The function [ ] ( ) ( )2 2 :  0,        f T L LΩ → Ω  is mean square continuous.

(H2) There exists an integrable function [ ] :  0,     ,k T R+→  where
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such that the function f  satisfies the mean square Lipschitz condition
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(H3) There exists a positive real number m1 such that
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Now we have the following lemmas.
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This completes the proof.

Lemma 2.2: The solution of the problem (1) and (2) can be expressed by the integral equation
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Proof. Integrating equation (1), we obtain
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Then we can prove the following lemma.

Lemma 2.3  :    .F C C→
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which proves that  :    .F C C→

EXISTENCE AND UNIQUENESS
For the existence of a unique continuous solution X ∈ C of the problem (1)-(2), we have

the following theorem.

Theorem 3.1 Let the assumptions (H1)−(H3) be satisfied. If 2m < 1, then the problem(1)-(2) has a unique solution X ∈ C.

Proof. Let X and X* ∈ C, then
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Hence

If 2m < 1 , then F is contraction and there exists a unique solution X ∈ C of the nonlocal

stochastic problem (1)-(2), [2]. This solution is given by (4)
* *2X X .FX X

C C
F m− ≤ −

CONTINUOUS DEPENDENCE
Consider the stochastic differential equation (1) with the nonlocal condition
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Definition 4.1 The solution X ∈ C of the nonlocal problem (1)-(2) is continuously dependent (on the data X0) if 0, 0δ∈∀ > ∃ >

such that 0 0 2
X X δ− ≤ implies that X X c− ≤∈

Here, we study the continuous dependence (on the random data X0) of the solution of the stochastic 

differential equation (1) and (2).

Theorem 4.2  Let the assumptions (H1) − (H3) be satisfied. Then the solution of the

nonlocal problem (1)-(2) is continuously dependent on the random data X0.

Proof. Let
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This completes the proof.
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Now consider the stochastic differential equation (1) with the nonlocal condition
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Definition 4.2 The solution X ∈ C of the nonlocal problem (1)-(2) is continuously dependent (on the coefficient ak of the 

nonlocal condition) if 0, 0δ∈∀ > ∃ > such that k ka a δ− ≤ implies that X X c− ≤∈

Here, we study the continuous dependence (on the random data X0) of the solution of the stochastic  differential equation (1) and (2).

Theorem 4.3 Let the assumptions (H1) − (H3) be satisfied. Then the solution of the nonlocal problem (1)-(2) is continuously 
dependent on the coefficient ak of the nonlocal condition.

Proof. Let
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This completes the proof.

NON LOCAL INTEGRAL CONDITION
Let ak = v(tk) − v(tk −1), τk ∈ (tk−1, tk), where (0 < t1 < t2 < t3 < …< T).

Then, the nonlocal condition (2) will be in the form
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that is, the nonlocal conditions (2) is transformed to the mean square Riemann-Steltjes integral condition
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Now, we have the following theorem.

Theorem 5.4 Let the assumptions (H1)-(H3) be satisfied, then the stochastic differential equation (1) with the nonlocal 
integral condition (3) has a unique mean square continuous solution represented in the form
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Proof. Taking the limit of equation (4) we get the proof.
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