
Volume 2, No. 5, May 2011 

Journal of Global Research in Computer Science 

RESEARCH PAPER 

Available Online at www.jgrcs.info 

© JGRCS 2010, All Rights Reserved   37 

DETECTING ANOMALIES DURING MULTIPLE INHERITANCE  

Shubpreet Kaur
1 *

, Shivani Goel
2
 

 

1 MTech Student, Thapar University, Patiala, Punjab, India 
1shubpreetkaur@gmail.com, 

2 Assistant Professor, Department of Computer Science, Thapar University, Patiala, Punjab, India 
2shivani@thapar.edu 

  

Abstract: Object oriented software is developed with iterative and recursive increments. Object oriented software testing starts modules with unit 
testing in which each module is tested first then modules are integrated that forms integration testing and then they are collaborated to make a system 

which begins with system testing. In multiple inheritance, while collaborating various base classes to a derived class, there  comes static and dynamic 
anomalies i.e. objects and the values assigned to the objects vary. So an approach is discussed to detect such anomalies. And one of the major 
challenges in software testing is the generation of test cases. Here we generating test cases firstly with unit testing approach, then integration and then 
with system testing approach.  By testing in this way it improves the quality of software assure the high reliability of software. In this paper, our 
focus is on classes, objects, inheritance, method overriding, and polymorphism  
 
Keywords: Generation of test cases, integration testing, Multiple inheritance, Object oriented testing, Software testing, Static and dynamic anomalies, 

system testing, unit testing, 

 

            INTRODUCTION 

 
Object oriented system has concept of classes and objects. 

Object oriented systems have interaction among classes and 

objects. Classes are the containers of data members and 

member functions. Objects are the run time entities which are 

associated with various classes and they can call their data 
members and member functions with which they are 

associated. Objects keeps the track of various member 

function and data members and retain their value in object 

only.  

 

Testing of classes can be done at three levels - unit testing, 

integration testing and system testing. Unit testing is testing 

each module of a class with the object created by the class 

itself. Integration testing is the merging of two units or classes. 

In object oriented systems, one of the simplest ways of 

integrating two classes is using inheritance in which the parent 

class is the base class and child class is inheriting the features 
of parent class known as derived class. Initially suppose we 

have two classes. So their will be two objects. But with 

integration, there is an increase in classes and objects which 

complicate testing and the chances of bugs and anomalies 

increase. Minimum number of objects gives better results with 

accuracy.  

 

System testing comes after unit testing and integration testing. 

After merging units i.e. classes, we will get a bigger unit. 

System testing is testing the whole program. A number of 

classes are integrated together apart from inheritance to make 

a system. Calling various class objects with only correct 

functions is a challenge for system testing. 

 
For all type of testing, the documentation part of the behavior 

of the program in different situations like desired and wrong 

function call or sequence call is called a test case. A test case 

tells in which cases the software will pass or fail. Pass means 

it will succeed giving the desired results. A failed test case 

means a failure in execution of that test path. The failure of a 

test case indicates that either it is an error or an anomaly.   

  

 

LITERATURE SURVEY 

Inheritance and polymorphism provide simplest ways of reuse 

in object oriented systems. Various issues and problems 

associated with testing polymorphic behavior of classes is 

discussed by Saini [11]. His approach is based on single 

inheritance. Various problems and issues on multilevel 

inheritance are reported by Alexander and Offutt [7].  

Stroustrup, believed that multiple inheritance complicates a 

programming language significantly, is hard to implement, 

and is expensive to run [13].Christian focuses on object 

oriented systems with integration testing as object oriented 



Shubpreet Kaur
 
et al, Journal of Global Research in Computer Science, Volume 2 (5), May 2011,  

© JGRCS 2010, All Rights Reserved   38 

technology is too complex and it is a recursive and iterative 

process from analysis, design, implementation and testing 

view. There are many modules have interactions which 
increases the complexity and makes integration testing 

difficult and creates problem with generation of test cases[2]. 

Alexander describes the syntactic patterns for each object 

oriented  fault type saying that the software contains an 

anomaly and possibly a fault [9]. Rountev present a general 

approach for adapting whole program class analysis to operate 

on program fragments in polymorphism [1]. Pressman 

suggests that integration of the system as a whole and then 

testing is a big bang approach in which all the units are taken 

together and tested together which is doomed to failure. So 

always use incremental integration i.e. collaborate two units 

and then apply integration testing. Fault based testing is 
discussed by him which identifies the method calls, objects 

which has high likelihood of uncovering plausible faults [6]. 

There have been some conflicts in ideas, concepts, and 

opinions among researchers regarding object oriented 

programming [12]. Robert V. Binder focuses on test case 

design - heuristic and formal techniques to develop test cases 

from object-oriented representations and 

implementations, testability - factors in controllability and 

observability [10].   

 

In our earlier paper, an approach to identify anomalies in 
multilevel inheritance is discussed [3]. We are going to 

enhance this work on multiple inheritance in this paper. There 

are two approaches proposed here. First is based on detecting 

anomalies during and static and dynamic binding in multiple 

inheritance. Second is detecting anomalies during using unit, 

integration and system testing.  

 

MULTIPLE INHERITANCE 

Multiple inheritance is the ability of a class to have more than 

one base class (super class) as shown in Figure.1.  

 

Figure. 1. Multiple inheritance 

TYPES OF ANOMALIES 

Static anomaly- when two or more base classes have same 

function and the derived class gets confused to which function 

it should call if required as shown in Figure.2.. 

 

Figure.2. Static Anomaly in multiple inheritance 

Dynamic anomaly-when we are getting wrong or garbage 

values at run time. In this case anomaly occurs with wrong 

calling of object if there exists same or similar function name 

in multiple classes. Figure.3. summarizes this all.  

 

Figure.3. Dynamic anomaly in multiple inheritance 

ALGORITHMS FOR ANOMALY DETECTION IN 

MULTIPLE INHERITANCES 

An algorithm is designed for detecting the anomalies in 

multiple inheritance. For this various definitions used in the 

algorithm are discussed 

Some Definitions  

Type Family (TF): It is a set of classes that share a common 

behavior with respect to a base class A (we call it family (A)). 

Each descendent of A is a member B of A’s family. If B is in 

A’s family, polymorphism means that any instance of B may 

be freely used wherever an instance of A is expected. Every 

class A defines a type family, and that type family includes at 

least A [11]. 

Let A is a class in some type family. 

Used by: A state variable v ε A is used by some method A if v 

is used in some expression in m. 

Defined by: A state variable v ε A is defined by some method 

m ε A if m assigns first legal value to v. 

Dependency of Methods: Two methods m,n ε A, we say that m 

is dependent on n if m uses a state variable v ε A which is 

defined by n. 

Algorithm for static anomaly detection 

1. initialize result=false 

2. for every class ε TF do 



Shubpreet Kaur
 
et al, Journal of Global Research in Computer Science, Volume 2 (5), May 2011,  

© JGRCS 2010, All Rights Reserved   39 

3. for all methods mi  ε A and A is the child class or leaf 

node do 

4. if there exists multiple parents for some p between 2 to 
n of child class then 

5. if each parent class  is publicly inherited then 

6. and if method mk  of parent class is also defined by 

some other parent class ε TF and child is the descendent 

of parent but the child class does not contain the 

method mk and there exists a call from child class object 

to method of mi   parent class then 

7. result=true 

8. end for 

9. end for 

10. end for 

11. if there exists a call to method with the object specified 
with the class name then 

12. return result 

 

Explanation: Let’s suppose initially there is no error in the 

program. So, for that we initialized result is false. Then we are 

checking for every class that belongs to the same type family 

starting from child class. To check for all the methods defined 

in the child class. Here child class is the leaf node. If there 

exists multiple parents (2 or more than 2) of that child class 

then there can be the chances of ambiguity if both the parents 

have the same method present in both the classes but not 

defined in the child class. If child class also has the same 

method name defined then there will be no ambiguity at all 

because the call will go only to the method present in the child 

class. Other case is to check whether the parent’s classes are 

publically inherited or not. If the all parent classes are 

publically inherited then there will be the chance of an error. 

Suppose there are two parent classes of one child class. One 

class is publically inherited and other is privately inherited 

then in that case there will be no error but in that case there 

can occur the problem of dynamic anomaly that if inherited 

the parent class privately and we are using its data members in 

the child class then instead of inheriting the original value the 

garbage value will be taken. Now we are checking for the case 

of ambiguity. For this firstly we check for the existence of 

multiple parents and if those are publicly inherited. Then 

checking for the methods if they are present in all the parent 

classes but not in the child class. And child is the descendent 

of parent and we are calling the method of parent class with 

the object of child class. Then we can say there exists the 

static ambiguity which is a compile time error. And the result 

changes from false to true that there is an ambiguity. If the 

method is called with the specified object with the class name 

and method then there will be no ambiguity if same method 

name is defined in the other parent classes. 

Algorithm for dynamic anomaly detection 

1. initialize result=false 

2. for every class ε TF do 

3. for all methods mi  ε A and A is the child class or leaf 

node do 
4. if there exists multiple parents for some p between 1 

to n of child class then 

5. for parent class is inherited for some p between 1 to n 

do 
6. for each state variable vj ε parent used by mi  do 

7. if vj is defined by mk ε parent for some k between 1 to 

m 

8. and if mk  is overridden by child class ε TF and child 

is the descendent of parent then 

9. if there exists a call with child class object from mi to 

mk of parent then 

10. result=true 
11. end for 

12. end for 

13. end for 

14. if there exists a call to method with the object 

specifying the class name then 

15. result =false 

16. return result 

 

Explanation: Here also suppose initially there is no error in 

the program. So, for that we initialized result is false. Then we 

are checking for every class that belongs to the same type 

family starting from child class. To check for all the methods 

defined in the child class. Here child class is the leaf node. If 

there exists multiple parents (2 or more than 2) of that child 

class then there can be the chances of anomaly that whether 

the parent class is publicly inherited or not.  Anomaly exists 

because of the wrong object call is given. So for that we are 

checking the state variable that belongs to child class methods. 

So for this we are checking the state variable used by the 

parent and the variable vj is defined by method mk of parent 

class and this method is overridden by child class and there 

exists a call with child class object from mi to mk of parent 

class. And the result returns true i.e. there exists data flow 

anomaly. And if there exists a call to method with the object 

specifying the class name there would be no data flow 

anomaly. And the result is false. 

VERIFICATION OF THE PROPOSED ALGORITHMS 

USING A CASE STUDY 

Consider an example of multiple inheritance: There are two 

base classes one is Library and other is Canteen and there is 

one derived class which is inheriting both these class as 

depicting in Figure.4. Class Library has object l, class Canteen 

has object c and class Student has object s.  



Shubpreet Kaur
 
et al, Journal of Global Research in Computer Science, Volume 2 (5), May 2011,  

© JGRCS 2010, All Rights Reserved   40 

 

Figure.4. Case study of Multiple inheritance 

The correct sequence call of methods is indicated in Figure 5. 

 

Figure. 5 Correct Sequence call of methods 

Unit Testing First we will start with unit testing. At unit 

testing we will test each class with its object itself.  

In unit testing, all the classes are tested with their own objects. 

All classes are getting pass status because we are initializing 

them and displaying them in the same class. The case of 

display() function in student class (which is derived of the get 

and get1 base classes). It is displaying the correct result of 

sname (i.e. student name) and other parameters as garbage 

because will be inheriting their features in the later part. 

Table 1: Test cases of Unit testing in Multiple Inheritance 

Integration Testing : Here we are testing base classes with 

derived classes and objects of both. 

 

In this only two cases are passing out of six where we are 

calling them in correct sequence. Other are the incorrect 

sequence calls which will give garbage value.  Example we 

are calling display() function first and get() function later then 

it gives a garbage value. But in case if we are handling large 

project in that case detecting such a mistake can be the 

difficult task.  



Volume 2, No. 5, May 2011 

Journal of Global Research in Computer Science 

RESEARCH PAPER 

Available Online at www.jgrcs.info 

© JGRCS 2010, All Rights Reserved   41 

Table 2: Test cases of Integration testing in Multiple 

Inheritance 

System Testing : Here all the classes are tested with all the 

objects in all possible sequence. 

In system testing also, we are getting only two test cases 

having pass status. Others are displaying garbage value 

because of wrong function call.

Table 3: Test cases of System testing in Multiple Inheritance 

 

HERE WE ARE DISCUSSING COMMON ANOMALIES 

IDENTIFIED FROM ABOVE TEST CASES: 

 An error comes in integration testing that we are calling 

an object with base class object and then using other 

function with derived class object. Example is shown in 

Figure 6. 

Figure.6. 

Data flow anomaly 1 

 Figure. 7 shows a case in which base class does not calls a 

derived class but a derived class can always call a base 

class. 

 

Figure. 7 Data flow anomaly 2 

 When a base class calls other base class in multiple 

inheritance , an anomaly occurs (Figure 8).   

 



Shubpreet Kaur
 
et al, Journal of Global Research in Computer Science, Volume 2 (5), May 2011,  

© JGRCS 2010, All Rights Reserved   42 

Figure.8. Data flow anomaly 3 

 No anomaly: When both the base classes are inherited in 

derived class and they are calling with the required object 

or with the derived class object as stated in Figure 9. 

 

 

Figure.9. No Data flow anomaly 

The above cases indicates that correct sequence call is 

essential for successful inheritance. A model of Do’s and 

Don’ts in multiple inheritance is proposed 

here.  

CONCLUSION 

 

 In this paper, static and dynamic anomalies of multiple 

inheritance are discussed. Algorithms are presented with 

which can detect static and dynamic anomalies. They are 

verified using unit, integration and system testing. So to make 

system error free, unit, integration and system testing  is 

applied. These algorithms trap all the static and dynamic 
errors. The test cases are shown which tells testing done in 

unit, integration and system testing that in which cases the 

code will fail and pass.  

 

REFERENCES 

 
[1] Atanas Rountev, Ana Milanova, Barbara G. Ryder, 

Fragment Class Analysis for Testing of Polymorphism in 
Java Software, IEEE Transaction, June 2004, vol. 30, 
no.6, pp.372-387 

[2] Bucanac. Christian, “Object oriented testing 
report”,Software verification and validation, Version. 0.2, 
December 1998, pp. 3-7. 

[3] Kaur. Shubpreet,Goel. Shivani,“Testing Anomalies in 
Multiple and Multilevel Inheritance”, International 
Journal of Computers and Communications,  May 2011. 

[4] McGregor D., John, A practical guide to testing object 
oriented systems 

[5] Meyer, B., Object-Oriented Software Construction. 
Prentice Hall, second ed., Apr. 1997.  

[6] Pressman, R.S. Software Engineering: A Practitioner’s 
Approach. Mc Graw Hill, second ed., 2005. 

 [7] R. Alexander and J. Offutt.,” Criteria for Testing 
Polymorphic Relationships”, In  Proceedings of the 11th 
international Symposium on Software Reliability 
Engineering (Issre'00)  (October 08  - 11, 2000). ISSRE. 
IEEE Computer Society, Washington, DC, pp.15-23. 

[8] R. Binder, Testing object-oriented software: a survey, 
Journal of Software Testing, verification and Reliability, 
1996, Vol 6, pp.125–252. 

[9] R. T. Alexander, J. Offutt, and J. M. Bieman, “Syntactic 
Fault Patterns in OO Programs”, Proceedings of the 8th 
International Conference on Engineering of Complex 
Computer Software (ICECCS '02), Greenbelt, MD, 
November 2002. 

[10] R. V. Binder, Testing Object-Oriented Systems Models, 
Patterns, and Tools,  Addison-Wesley, NY USA, 1999. 

[11] Saini D.K, Testing Polymorphism in Object Oriented 
Systems for Improving software Quality, - ACM 
SIGSOFT Software Engineering Notes, 2009. 

[12] S Supavita , Object-Oriented Software and UML-Based 
Testing: A Survey Report, 2009. 

[13] Stroustrup, B., Multiple Inheritance for C++, Published in 
the May 1999 issue of "The C/C++ Users Journal". 

 


