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ABSTRACT 

Vincristine sulphate (VCS) is a vinca alkaloid obtained from the 

periwinkle plant (Catharanthus roseus) is the most widely recognized 

chemotherapeutic medications utilized for the treatment of a few types of 

malignancies. Moreover, VCS is a potent anticancer agent and drug of 

choice for the treatment of childhood and adult acute lymphocytic leukemia, 

Hodkin’s and non-Hodgkin’s lymphoma as well as solid tumors including 

sarcomas, neuroblastoma, breast cancer, etc. In any case, poor 

biopharmaceutical and pharmacokinetic characteristics of VCS like high 

dosing recurrence and broad protein binding limit the clinical capability of 

VCS in tumor treatment. This review focuses on progress in the 

encapsulation efficiency and sustained release pattern of the drug.

INTRODUCTION 

Controlled and sustained release parenteral drug delivery vectors offer several advantages like reduced 

dose frequency, lesser side-effects, and mild local irritation as compared to conventional parental injections [1-2]. 

Consequently, modifications made parenteral dosage forms exhibit optimum drug plasma level within therapeutic 

range for longer period with enhanced therapeutic effect [3-5].  

Vincristine sulphate (VCS) is a vinca alkaloid obtained from the plant Catharanthus roseus [6-7]. Moreover, 

VCS is a potent anticancer agent and drug of choice for the treatment of childhood and adult acute lymphocytic 

leukemia, Hodkin’s and non-Hodgkin’s lymphoma as well as solid tumors including sarcomas, neuroblastoma, 

breast cancer, etc. [8]. VCS binds to tubulin in concentration dependent method and consequently results 

microtubule depolymerization, metaphase arrests and apoptosis [9]. Despite excellent anticancer efficacy, poor 

biopharmaceutical and pharmacokinetic traits of VCS impede the clinical efficacy and patient placate. The very 

short serum half-life (12 min), high dosing frequency (1.4 mg/m2 per week for 4 weeks) and extensive protein 

binding (75%) limit the clinical potential of VCS in cancer therapy [10]. Notably, VCS is a cell specific anticancer agent 

and its therapeutic effect may be boosted by exposing VCS to tumor cells for longer period of time during sensitive 

stage of cell cycle [11]. Thus, there is a need for the development of long acting injectable drug delivery systems of 

VCS to regulate the frequency of drug administration and ultimately the quality of patient’s life. 

Previously, VCS was encapsulated in liposomes, microspheres, niosomes, nanoparticles, gold 

nanoparticles, and nanomicelles for augmenting the sustained release, pharmacokinetic profile and antitumor 

effect [12-13]. During the last two decades, injectable in situ gels have attracted considerable attention as polymeric 

drug carriers, and then great interest has arisen on the applications of in situ gels in injectable drug delivery 

systems [14-15]. These systems are in situ gel delivery systems, exposed to body temperature (37°C), are capable of 

getting transformed to a very high viscous gel, though remaining fluid at room temperature [16-19]. The gel network 
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that remains insoluble in water and retains shape for a long period can become an appropriate carrier for 

therapeutic moieties [20-21]. For localized therapy, injection of in situ gel causes the formation of a depot at the site 

of drug administration, which continuously and slowly releases the drug to the target tissue [22-25]. Besides, the gel 

may deliver a drug throughout the tumor, thereby decreasing systemic toxicity, which is also an advantage over 

actively or other passive targeted therapies [26-28]. Chitosan/-β-glycerophosphate in situ gel has been proposed for 

diverse pharmaceutical applications including parenetral (intraperitoneal, intramuscular and subcutaneous 

injections), inhalation, oral, ophthalmic and topical administration [29-30]. Polymeric microspheres have gained 

enormous attention owing to wide range of applications [31-33]. Notably, microspheres pose enhanced physical and 

chemical stability in addition to high pay load and easy industrial scale up [34-35]. However, recent studies showed 

that dextran microspheres due to its well defined and desirable pharmaceutical attributes have been extensively 

studied for controlled and sustained drug delivery [36-39]. Moreover, biodegradable and biocompatible dextran 

microspheres do not influence the cell viability in biological system [40-44]. Meritoriously, it shows several advantages 

to integrate two distinct drug delivery systems for surmounting the biopharmaceutical and pharmacokinetic 

limitations of VCS with the aim of inducing the synergistic sustained release property through parenteral route of 

administration. 

Therefore, in recent investigation, vincristine sulphate loaded dextran microspheres incorporated with 

chitosan/β-glycerophosphate gel (VCS-Dextran MSs-Gel) were engineered by optimizing the processing conditions 

using central composite design (CCD) and response surface methodology (RSM) [6,45-48]. Furthermore, particle size, 

zeta potential, surface morphology, encapsulation efficiency, drug loading capacity, gelling temperature, viscosity, 

in vitro drug release, and standard cell proliferation assay using THP-1 (human leukemia cells) cell line were 

determined in vitro to analyze the therapeutic efficacy of VCS-Dextran MSs-Gel in comparison to VCS-Dextran MSs 
[20,49-50]. Additionally, pharmacokinetic elements of VCS-Dextran MSs-Gel and VCS-Dextran MSs were determined in 

vivo following subcutaneous route of administration and compared with VCS injected intravenously in Swiss albino 

male mice. 

CONCLUSION 

In recent years numerous studies focused on prolonged release of Vincristine sulphate. Recent studies 

showed that dextran microspheres due to its well defined and desirable pharmaceutical attributes have been 

extensively used for controlled and sustained drug delivery of drug. Dextran microspheres do not influence the cell 

viability in biological system because of its properties, such as biocompatibility and biodegradability. Meritoriously, 

it shows several advantages to integrate two distinct drug delivery systems for surmounting the biopharmaceutical 

and pharmacokinetic limitations of VCS. 
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