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Abstract: Weibull and log-logistic distributions are two popular distributions for analyzing lifetime data. In this paper 

it is assumed that the data are coming either from Weibull or log-logistic distributions. The maximized likelihood ratio 

test to discriminate between the two distributions is used. The asymptotic distributions of the logarithm of the ratio of 

the maximized likelihood are obtained. These asymptotic results are used to estimate the probability of correct selection 

and the minimum sample size needed to discriminate between the two distributions. Two real data life are analyzed to 

see how the proposed method works in practice. 
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I. INTRODUCTION 

 
Choosing the correct or best-fitting distribution for a given data set is an important issue. Most of the times distribution 

functions may provide a similar data fit but selecting the correct or more nearly correct model is desirable. The problem 

of choosing the correct model has been attempted by many researchers. Cox (1961) discussed the effect of choosing the 

wrong model. Cox (1962) tackled the problem of discriminating between the log-normal and the exponential 

distributions, based on the likelihood function, and derived the asymptotic distribution of the likelihood ratio statistic. 

Jackson (1968) derived asymptotic results for the case log-normal versus gamma. The case log-normal versus Weibull 

was addressed by Dumonceaux and Antle (1973). They proposed a certain test and provided its critical values. Pereira 

(1977) developed another two tests to discriminate between log-normal and Weibull distributions. Bain and Engelhardt 

(1980) covered the case Weibull versus gamma. Chen (1980) made significant contribution in discrimination problem 

when using small sample size. Kappenman (1982) studied the probability of correct selection for the pairs Weibull 

versus log-normal, Weibull versus gamma, and gamma versus log-normal. Firth (1988) discussed the problem of 

discriminating between the log-normal and gamma distributions. Fearn and Nebenzahl (1991) used the maximum 

likelihood ratio method in discriminating between the Weibull and gamma distributions. Wiens (1999) discussed the 

effect of choosing the wrong model through a real data example and by using log-normal and gamma models. Gupta 

and Kundu (2003) considered the likelihood ratio statistic for discriminating between Weibull and generalized 

exponential distributions. Gupta and Kundu (2004) discussed the problem of discriminating between the gamma and 

generalized exponential distributions by using maximized likelihood ratio test. Pascual (2005) discussed the effect of 

misspecification on the maximum likelihood estimates when discriminating between the log-normal and gamma 

distribution functions. Kundu and Manglick (2005) used the ratio of the maximized likelihoods in discriminating 

between log-normal and gamma distributions. Dey and Kundu (2009) considered the problem of discrimination among 

Weibull, log-normal and generalized exponential distributions. They used the maximized likelihood test to choose the 

best fitted model. Dey and Kundu (2010) used the maximized likelihood ratio test in the discrimination problem 

between log-normal and log-logistic distributions.  

Some procedures for selecting between distributrions for data of not only complete but also censored have been paid 

attention by some authors.  Siswadi and Quesenberry (1982), when selecting among Weibull, log-normal and gamma 

distributions, compared the scale invariant, scale shape invariant and maximized likelihood function tests for complete 
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data and  scale invariant and maximized likelihood function tests for Type-I censored data. Kim and Yum (2008) 

compared the ratio of maximized likelihoods and scale invariant tests for discriminating between the Weibull and log-

normal distributions for complete, Type-Ι and Type–II censored data. Dey and Kundu (2012) considered the 

maximized likelihood ratio test in choosing between Weibull and log-normal distributions for type-II censored data.  

Weibull and log-logistic distributions are two popular distributions for analyzing lifetime data. In this paper, the 

problem of discriminating between these two distribution functions is considered. A hypothesis testing method is used 

in which it is assumed that a data are coming either from Weibull or log-logistic distribution. The ratio of the 

maximized likelihood test is used to discriminate between them. The asymptotic distributions of the logarithm of the 

ratio of the maximized likelihood are obtained through two theorems. These asymptotic results are used to estimate the 

probability of correct selection, from which the minimum sample size needed to discriminate between the two 

distribution functions for a user specified probability of correct selection is obtained. Two real data life are analyzed to 

see how the proposed method works in practice. 

Figures 1 and 3 show the diverse shape of the probability density function (p.d.f.) and cumulative distribution function 

(c.d.f.) respectively, of Weibull distribution at η=1 and β = 0.5, 1, 1.5, 2, 5. While Figures 2 and 4 show that of log-

logistic distribution at ε =1 and σ = 0.5, 1, 2, 4, 8. From these figures, the closeness of the two p.d.f. and c.d.f. functions 

can be easily visualized. However some of the characteristics of Weibull and log-logistic distributions can be quite 

different. This can be shown when considering their hazard functions, given in Figures 5 and 6 respectively. Therefore, 

if the data are coming from any one of them, may be it is modeled by the other one. In addition if the sample size is not 

very large the problem of choosing the correct distribution becomes more difficult, but it is still very important to make 

the best decision based on the data at hand. 

The rest of the paper is organized as follows. In Section 2, the test statistic is presented. In Section 3, the asymptotic 

distributions of the test statistic under null hypotheses is obtained. The minimum sample size needed to discriminate 

between Weibull and log-logistic distributions at a user specified protection level and tolerance level is determined In 

Section 4. Two real life data sets are analyzed in Section 5. Finally a conclusion is given in Section 6. 

 

                                         
Fig. 1. Density functions of the Weibull distribution at η=1 and β = 0.5, 1, 1.5, 2, 5 
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Fig, 2. Density functions of the log-logistic distribution at ε =1 and σ = 0.5, 1, 2, 4, 8. 

                                                    
Fig. 3. Cumulative distribution functions of the Weibull at η=1 and β =0.5, 1, 1.5, 2, 5. 

                                         
Fig. 4. Cumulative distribution functions of the log-logistic at ε =1 and σ =0.5, 1, 2, 4, 8. 
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Fig. 5. Hazard functions of the Weibull at η=1 and β =0.5, 1, 1.5, 2, 5. 

                                                   
Fig. 6. Hazard functions of the log-logistic at ε =1 and σ =0.5, 1, 2, 4, 8. 

 

II. THE TEST STATISTIC  

 
Suppose X1,…,Xn are independent and identically distributed random variables from any one of the Weibull or log-

logistic distribution functions. A Weibull distribution, denoted by WE(η,β), with scale parameter η > 0 and shape 

parameter β > 0 has probability density function 
 )(1),;( x

WE exxf  ,                      , >0                x  > 0.                                                                   (2.1) 

A log-logistic distribution, denoted by LL(ε,σ), with scale parameter ε > 0 and shape parameter   σ > 0 has probability 

density function 
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The likelihood functions of WE(η,β) and LL(ε,σ) distributions are given as 
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respectively. The ratio of the maximized likelihood (RML) is defined as 
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Where )ˆ,ˆ(   and )ˆ,ˆ(   are the maximum likelihood estimators of ),(   and ),(  respectively. The logarithm 

of RML can be obtained as follows 
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The Weibull distribution is chosen if: T >0. Otherwise the log-logistic distribution is the preferred model.  

 

The exact distributions of T given in Equation (2.3) under the respective parent distributions are difficult to obtain, 

therefore the asymptotic distributions of T under the null hypotheses must be obtained. It is known that, also the 

probability of correct selection (PCS) depends on the parent distribution. That is, if the data are originally coming from 

Weibull distribution the probability of correct selection (PCSWE) is given as, 

PCSWE = P (T > 0 / data follow Weibull distribution). 

Also, if the data are originally coming from log-logistic distribution the probability of correct selection (PCSLL) is given 

as, 

PCSLL = P (T < 0 /data follow log-logistic distribution). 

Therefore, the asymptotic distributions of T can be used to compute the approximate PCS. 

 

III. ASYMPTOTIC DISTRIBUTIONS OF THE TEST STATISTIC UNDER NULL HYPOTHESES  

 
In this section, the asymptotic distribution of T statistic under null hypothesis is obtained in two different cases. Case 1: 

The data are coming from a Weibull distribution and the alternative they are from a log-logistic distribution. Case 2: 

The data are coming from a log-logistic distribution and the alternative they are from a Weibull distribution. The results 

are obtained through two theorems. The following definition and lemmas are needed to follow up the next theorems. 

The proof of lemmas follows using similar arguments as that of Gupta and Kundu (2003). 

  

Definition  

For any Borel measurable function h(.), EWE[h(U)] and VWE[h(U)] denote mean and variance of h(U) under the 

assumption that U follows WE(.,.). Similarly define ELL[h(U)] and VLL[h(U)] as mean and variance of h(U) under the 

assumption that U follows LL(.,.). Also if g(.) and h(.) are two Borel measurable functions, define along the same line : 

CovWE[g(U),h(U)]= EWE[g(U)h(U)] – EWE[g(U)]EWE[h(U)],  

and similarly  

    CovLL[g(U),h(U)]= ELL[g(U)h(U)] – ELL[g(U)]ELL[h(U)],  

where U follows WE(.,.) and LL(.,.) respectively. In the following a.s. denote the almost sure convergence. 

 

Lemma 1. Under the assumption that the data are from WE(η, β), and as n , we have: 

(i)   


, a.s.,  


 , a.s., where 
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 Lemma 2. Under the assumption that the data are from LL(ε,σ), and as n , we have 
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Theorem 1. Under the assumption that the data are from a Weibull distribution, the distribution of T is approximately 

normally distributed with mean EWE(T) and variance VWE(T), where  
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Also differentiating Equation(3.3) with respect to  , equating with zero we get 
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Using Equation (3.5) in Equation (3.4) we get: 
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Then the result of Equation (3.1) is obtained. Also for large n we have, 
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Then the result of Equation (3.2) is obtained. Using the central limit theorem and using (iii) of Lemma 1, one can easily 

shows that  )(
1   TET
n

WE
 is asymptotically normally distributed with mean EWE(T) and variance VWE(T) given 

in Equations (3.1) and (3.2) respectively.    

Theorem 2. Under the assumption that the data are from log-logistic distribution, the distribution of T is approximately 

normally distributed with mean ELL(T) and variance VLL(T), where 
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Proof 

Let us assume that n data points x1,x2,…,xn are obtained from LL(ε,σ) with scale parameter ε and shape parameter σ. 

Now to obtain 
~

  and 
~

  as defined in Lemma 2 and define 
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Where )1,1(~ LLY .  

Differentiating Equation (3.9) with respect to   and equating by zero we get 
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Also, differentiating Equation (3.9) with respect to   and equating by zero we get:  
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~

  and 
~

  can be obtained by solving Equations (3.10) and (3.11). From these equations it is clear that 
~

  and 
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both functions of    and . 
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Then the result of Equation (3.7) is obtained. Also for large n we have 
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Then the result of Equation (3.8) is obtained. Using the central limit theorem and using (iii) of Lemma 2, one can easily 

shows that  )(
1

** TET
n

LL  is asymptotically normally distributed with mean ELL(T) and variance VLL(T) given in 

Equations (3.7) and (3.8) respectively.                                                                                           

In the next section the minimum sample size required to discriminate between Weibull and log-logistic 

distribution is obtained. In order to do that, 
~

 ,
~

 , ),( WEAM , ),( WEAV , 
~

 , 
~

 , ),( LLAM  and 

),( LLAV  are computed numerically using Equations (3.5), (3.6), (3.1), (3.2), (3.10), (3.11), (3.7) and (3.8) with 
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Mathcad program. Without lose of generality, we take  =1 and  =1, while  =0.5, 1, 1.5, 2, 2.5, 3, 5 and  =0.5, 1, 

1.5, 2, 2.5, 3, 4. The results are given in Tables 1 and 2.  

Table I. Different values of ),1( WEAM , ),1( WEAV , 
~

  and 
~

  at  =1 and  =0.5, 1, 1.5, 2,  2.5, 3, 5. 


 

),1( WEAM ),1( WEAV 
~

 
~

 

0.5 -0.049 1.161 0.397 0.718 

1 -0.074 2.407 0.630 1.437 

1.5 -0.142 3.810 0.735 2.155 

2 -0.211 5.358 0.794 2.874 

2.5 -0.279 7.021 0.831 3.592 

3 -0.348 8.786 0.857 4.311 

5 -0.622 12.975 0.912 7.185 

 

Table II. Different values of ),1( LLAM , ),1( LLAV , 
~

  and 
~

  at  =1and   =0.5, 1, 1.5, 2,  2.5,  3,  4. 

 

  ),1( LLAM
 

),1( LLAV
 

~

  

~

  

0.5 -0.169 8.680 0.164 0.25 

1 -0.194 8.839 0.405 0.5 

1.5 -0.219 9.006 0.548 0.75 

2 -0.245 9.171 0.637 1 

2.5 -0.271 9.337 0.697 1.25 

3 -0.298 9.505 0.740 1.5 

4 -0.355 9.859 0.798 2 

 

IV. DETERMINATION OF SAMPLE SIZE  

 
In this section, a method to determine the minimum sample size needed to discriminate between Weibull and log-

logistic distributions is proposed. The same arguments as that given in Gupta and Kundu (2003) are followed. It is 

known that if two distribution functions are very close, one needs a very large sample size to discriminate between 

them. While, if they are quite different, then one may not need very large sample size to discriminate between them. 

Also from a practical point of view, one may not need to differentiate between two so closed distribution functions. 

Therefore, it is expected that the user will specify before hand the minimum distance D* that he does not want to make 

the discrimination between two distribution functions if their distance is less than it. This minimum distance is called 

tolerance limit. Here the Kolmogrov-Smirnov (K-S) distance is used to measure the closeness between the Weibull and 

log-logistic distributions. Where, the Kolmogrov-Smirnov (K–S) distance between two distribution functions, say F(x) 

and G(x) is defined as .)()(sup xGxF
x

  Also it is expected that the user will specify beforehand the probability 

of correct selection (PCS) to achieve a certain protection level P*. With the help of K–S distance and PCS the required 

sample size n is obtained as follows. Considering Case 1 where it is assumed that the data are coming from WE(η,β), 
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then from Theorem 1, T is approximately normally distributed with mean EWE(T) and variance VWE(T). In this case the 

PCSWE is given by  

PCSWE( , )= Pr(T > 0)                              

                       )
),(

),(
(





WE

WE

AVn

AMn




  

Where Ф is the distribution function of the standard normal random variable. ),( WEAM  and ),( WEAV are 

given in Equations (3.1) and (3.2) respectively. Therefore, to determine the minimum sample size required to achieve at 

least P* protection level, solve for n the equation 
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),(

),(
( P
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AVZ
n


 .                                                                                                                                        (4.1)                                                 

Here *P
Z is the 100 P* percentile point of a standard normal distribution. The values of n are obtained and reported in 

Table 3 where For P*=0.7, η=1 and  =0.5, 1, 1.5, 2, 2.5, 3, 5, with 
~

  and 
~

  as given in Table 1. Also the K-S 

distances between WE(1, β) and LL(
~

 ,
~

 ) are obtained and presented in Table 3. Considering Case 2 where it is 

assumed that the data are coming from WE(η,β), then from Theorem 2, T is approximately normally distributed with 

mean ELL(T) and variance VLL(T). In this case, the PCSLL is given by  

    

PCSLL ),(   = Pr(T < 0) 

                       

)
),(

),(
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LL

LL

AVn

AMn
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
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. 

Where ),( LLAM and ),( LLAV are given in Equations (3.7) and (3.8) respectively. Therefore, to determine the 

minimum sample size required to achieve at least P* protection level, solve for n the equation 
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),(

),(
( P

AVn

AMn

LL

LL 
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
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,                                                      

i.e., 
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),(





LL

LLP

AV

AMZ
n


 .                                                                                                                                       (4.2)                                                 

The values of n are obtained and reported in Table 4 where P*= 0.7, ε=1 and σ=0.5, 1, 1.5, 2, 2.5, 3, 4, with 
~

  and 
~

  

as given in Table 2. Also the K-S distances between LL(1, σ) and WE(
~

 ,
~

 ) are obtained and presented in Table 4.   

From Tables 3 and 4 it can be seen that for a given PCS i.e., p*=0.7, as β and σ increase the sample size decreases. 

Also as the K-S distance between the two distributions increases the sample size decreases as expected. To resume, if 

one knows the range of the shape parameter of the null distribution and for a given PCS that achieves a certain 

protection level P*, then the minimum sample size can be obtained by taking the maximum  n obtained from Equations 

(4.1) and (4.2). But unfortunately in practice the shape parameter may be completely unknown; therefore, the K-S 

distances can replace the unknown parameters to take the decision. That is, for a given protection level P* and a given 

pre-specified tolerance limit D*, the minimum sample size can be obtained by taking the maximum n obtained from 
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Equations (4.1), (4.2). For example, suppose that for a given P*= 0.7 and for β= 0.5 and σ= 0.5, then from Tables 3 and 

4 the minimum sample size required to discriminate between Weibull and log-logistic distributions is max(133, 84) 

=133. On the other hand if β and σ are unknown and suppose that the practitioner wants to discriminate between a 

Weibull and a log-logistic distribution functions only when the distance between them is greater than or equal to 0.180, 

i.e., D* ≥ 0.180 and with P* = 0.7. Then from Tables 3 and 4, it is clear that, D* ≥ 0.180 if β ≥ 0.5 and σ ≥ 3. Also, 

when the null distribution is Weibull, then for the tolerance limit D* ≥ 0.180, one needs n=133 to meet the PCS, P*= 

0.7. Similarly when the null distribution is log-logistic then one needs n=29 to meet the same protection level. Finally, 

the minimum sample size required to discriminate between Weibull and log-logistic distributions with P*= 0.7 and D* 

≥ 0.180 is max(133, 29) = 133.  

 
Table 3. The sample size n and the K-S distance for P*=0.7, η=1,  =0.5, 1, 1.5, 2, 2.5, 3, 5 when  the null hypothesis  is Weibull distribution. 

β 0.5 1 1.5 2 2.5 3 5 

n 133 121 52 33 25 20 9 

K-S 0.187 0.195 0.196 0.208 0.22 0.231 0.277 

 
Table 4. The sample size n and the K-S distance for P*=0.7, ε=1, σ=0.5, 1, 1.5, 2, 2.5, 3, 4 when the null hypothesis is log-logistic distribution. 

σ 0.5 1 1.5 2 2.5 3 4 

n 84 65 52 42 35 29 22 

K-S 0.123 0.135 0.147 0.158 0.17 0.182 0.205 

 

Notice that, Tables 3 and 4 are obtained for the protection level 0.7 but for other protection levels the tables can be 

easily modified. For example, if we need a sample size corresponding to protection level P*=0.9, then all the entries 

corresponding to the row of n, must be multiplied by
2

7.0

2

9.0 / ZZ . 

 

V. DATA ANALYSIS 
 

For illustrative purposes, two real data sets to discriminate between the Weibull and log-logistic distribution functions 

are analyzed. 

Data Set 1: The first data set (Gupta and kundu(2003)) represent the failure times of 30 air conditions of an airplane (in 

hours):  23, 261, 87, 7, 120, 14, 62, 47, 225,71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 

95. 

When the Weibull distribution is used, the MLEs of the different parameters are:


  =0.01827 and 


 = 0.85494. Also 

ln[LWE(


, )] = -152.0068. Similarly when the log-logistic distribution is used, the MLEs of the different parameters 

are:  


 =1.2015 and 


 =26.61693. Also ln[LLL(


 , )]= -152.34578. Consequently T= 0.3389. Therefore, by using 

the maximum likelihood ratio test to discriminate between Weibull and log-logistic distributions, the Weibull model is 

chosen for this data set.  

 

Data Set 2: The second data set (Gupta and kundu (2003)) represent the number of million revolutions before failure 

for each of 23 ball bearings in the life test and they are: 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 

54.12, 55.56, 67.80, 68.44, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.  

When the Weibull model is used, the MLEs of  and  are:


  = 0.01217 and 


 = 2.10490. Also ln[LWE(


 , )]=       

-113.67899. Similarly, if the log-logistic model is used, the MLEs of ε and σ parameters are: 


 =0.30078 

and


 =64.00749 Also ln[LLL ),(


 ]= -113.36619. Consequently T= -0.3128. Therefore, by using the maximum 

likelihood ratio test to discriminate between Weibull and log-logistic distributions, the log-logistic model is chosen for 

this data set.  
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VI. CONCLUSION  
 

In this paper we consider the problem of discriminating between Weibull and log-logistic distribution functions. It is 

assumed that a data are coming either from Weibull or log-logistic distribution. The maximized likelihood ratio test to 

discriminate between them is used. The asymptotic distributions of the logarithm of the ratio of the maximized 

likelihood are obtained. These asymptotic results are used to estimate the probability of correct selection. The minimum 

sample size needed to discriminate between the two distribution functions for a user specified probability of correct 

selection and a tolerance limit based on the distance between the two distributions is calculated. Two real data life are 

analyzed to see how the proposed method works in practice.  
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