
 ISSN (Online) : 2319 - 8753

 ISSN (Print) : 2347 - 6710

 International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

 2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st&22ndMarch, Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

 M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1849

Distributed Testing Environment with

Similarity Based Clustering By Using Pds
R.Kanimozhi, Prof.J.RBalakrishnan

PG student, Dept of computer science & engineering, Anand Institute of Higher Technology, Kazhipattur, chennai, India.

Director & professor, Dept of computer science & engineering Anand Institute of Higher Technology, Kazhipattur,

chennai, India.

Abstract—prioritizing the test cases helps to increase

the rate of fault detection. The difficulty of ensuring

the dependability in the growth of the scale of

software and software testing in distributed

environment a sufficient software testing technique is

not possible. It is often difficult to test a parallel and

distributed system in the real world deployment.

Hence in this paper, after generating test cases using

functional requirements, dependency structure

prioritization technique is used to prioritize the test

cases based on the functional structure of

dependency. A new technique namely cosine

similarity based clustering approach is used to group

the test cases based on the similarity values to form

clusters. Each cluster is distributed in the distributed

environment for parallel execution in order to reduce

the computation time and to improve the rate of fault

detection.

Index Terms—Cosine similarity approach,

dependency structure prioritization, software testing.

I. INTRODUCTION

Software engineering is the systematic design and

development of software products and maintenance

of software. Software testing plays a major role in

software engineering. Software testing is the process

of validating and verifying the product to meet the

requirements stated during the design and

development. Software bugs will almost always exist

in any software module with moderate size: not

because programmers are careless or irresponsible,

because the complexity of software is generally

intractable and humans have only limited ability to

manage complexity. It is also true that for any

complex systems, design defects can never be

completely ruled out.

Regression testing is process of retesting the

modified software and ensures that new error does

not introduce into the previously tested source code

due to these modifications. regression testing is very

expensive testing process in order to decrease the

cost of regression testing the software tester may

prioritize the test case so that the test case which are

more important are run earlier during regression

testing process. In this context, prioritization

techniques can take advantage of information

collected about the previous execution of test cases to

obtain test case orderings. For regression testing the

clustering technique is used for test case

prioritization. in this the test case having common

properties and similar fault detection ability are group

together within same group. Test case prioritization

improves the cost effectiveness of regression testing.

The technique is developed in order to run test cases

of higher priority in order to minimize time, cost and

effort during software testing process.

 Distributed Testing Environment with Similarity based clustering by using PDS

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1850

Fig 1 software life cycle model

Software testing involves test suites and test cases

for finding fault where test suite is a collection of test

cases that are grouped for test execution purposes. In

order to generate test cases, find the sequence of

interaction between the software testing scenarios for

the software modules. Test case prioritization

technique involves scheduling the test cases in an

order that improves the performance so that the test

cases with higher priority executed first which allow

increasing the rate of fault detection.

Dependency structure prioritization technique is

based on the functional dependencies between the

test cases. Functional dependencies are the

interactions and relationships between the system

functionality which determines the run sequence. A

Dependency Structure prioritization technique

reduces the cost of testing and fault detection

capabilities.

This prioritization technique classified into two

types namely open and closed dependency structure.

This technique is based on four algorithms namely

DSP_volume, DSP_height, Weighted_DFS and

Weighted_DFS_Visit.

 Clustering is the method of analyzing and

organizing data with similar characteristics are

grouped together. Clustering is used in various fields

including Data Mining, software engineering and

Machine Learning. Much research has been done in

the past to efficiently cluster data. Various algorithms

and methods have been proposed for clustering.

Hierarchical clustering, partitional clustering, nearest

neighbor clustering, fuzzy clustering and defect

clustering are some popular techniques used for

clustering.

Defect Clustering in Software testing means that

the majority of the defects are caused by a small

number of modules, i.e. the distribution of defects are

not across the application but rather centralized in

limited sections of the application. A new technique

namely cosine similarity based clustering is applied

to cluster the test cases that are prioritized by using

dependency structure. Cosine similarity is a vector

based similarity measure between two vectors

derived by using the Euclidean dot product formula.

Each clusters executed in distributed environment

for parallel execution of test case clusters to measure

the average fault rate. The results in the distributed

environment are integrated to produce a single

detection rate.

II. LITERATURE SURVEY

1. A clustering approach to improving test case

prioritization: an industrial case study – Ryan Carlson

(2011) says that they have limited their attention to a

financial subsystem of Dynamics Ax product since it

is a case study. It affects the choice of the number of

clusters and order of clusters because they are based

on the number of feature areas in Dynamics; different

cluster order will affect the results. The choice of use

of lines of code at the class level was based on the

availability of information extracted from project

repository this will affect their results.

2. Clustering based on cosine similarity measure –

satyasree (2012) in this paper, cosine similarity is

applied in data mining concept. Selecting different

dimensional space and frequency levels leads to

different accuracy rate in the clustering results

although it is proved more accurate than traditional

methods but still accuracy must be measured.

3. Using dependency structure for prioritization of

functional test suites- Shifa-e-Zehra Haidry and Tim

Miller (2013) in this paper, they proposed a new test

case prioritization technique that uses the dependency

information from the test suites to prioritize.

Dependency structure prioritization technique

includes four algorithms for prioritizing. The open

dependency proves to have lower execution cost and

closed dependency achieved better fault rate

detection than the traditional methods. Average rate

of fault detection is used to calculate the percentage

of fault rate but clustering approach is not considered

to improve the fault rate further.

4. Enhanced distributed document clustering

algorithm using different similarity measures - Neethi

Narayanan, J.E.Judith, Dr.J.Jayakumari (2013) in this

paper, a distributed environment is considered in

which all peers form a ring structure and the

information are stored in DHT. A local model is

formed using EDK-means using similarity algorithm.

All local models aggregated to form a global model

using EPCP2P this improves clustering quality and

accuracy. Even though Jaccard and Pearson

coefficients show better results than cosine similarity

 Distributed Testing Environment with Similarity based clustering by using PDS

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1851

in data mining but this is not possible in case of

software testing.

5. Comparison of Jaccard, Dice, Cosine similarity

coefficient to find best fitness value for web retrieved

document using genetic algorithm - Vikas Thada, Dr

Vivek Jaglan (2013) in this paper, they made a

comparative analysis for finding out the most

relevant document for the given set of keyword by

using three similarity coefficients namely cosine, dice

and jaccard this was performed by using genetic

algorithm approach. They selected first 10 paged out

of the google search result for their experiment based

on that the best fitness value were obtained using the

cosine similarity coefficients than the dice and

jaccard.

6. Prioritize code for testing to improve code

coverage of complex software - J.Jenny Li (2005)

Code prioritization for testing promises to achieve the

maximum testing coverage with the least cost. This is

an innovative method to provide hint on which part

of code should be tested first. It helps to provide

better code average. It includes two parts: extending

the traditional dominator analysis method to include

global impact of function/method calls, and

relaxation of the ―guaranteed‖ rule to ―at least‖ to

make the dominator analysis simpler. They had

implemented both the original dominator analysis

method and this relaxed method with global view, for

calculating code priority for testing. The two

calculations had been applied to 4 actual industrial

products. The experimental results show that the new

calculation is consistently better than the original

ones in identification of code to improve code

coverage.

7. Combinatorial Interaction Regression Testing: A

Study of Test Case Generation and Prioritization. -

Xiao Qu, Myra B. Cohen, Katherine M. Woolf

(2007) They have conducted an empirical study on

two software subjects, each with multiple successive

versions. The first method uses branch coverage from

the prior version. The second method is to use the

interaction weighting method, but rather than re-

generate they simply use it to order the given tests

based on their weights. They first examined the

effectiveness of CIT test suites compared with an

exhaustive strategy. They applied prioritization and

regen/ prio and compared their effectiveness on CIT

test suites. They examined several different ways to

control the prioritization. They used methods that

leverage code coverage from prior releases, as well as

one that is specification based. There results shows

that the CIT test suites may be an effective way to

reduce the test space and that prioritization improves

the ability to detect faults early in certain subjects.

8. Search Algorithms for Regression Test Case

Prioritization.- Zheng Li, Mark Harman, and Robert

M. Hierons(2007) This paper focuses on test case

prioritization techniques for code coverage, including

block coverage, decision (branch) coverage, and

statement coverage. This paper presents results from

an empirical study that compared the performance of

the five search algorithms applied to six programs,

ranging from 374 to 11,148 lines of code. In this

paper addresses the problems of choice of fitness

metric, characterization of landscape modality, and

determination of the most suitable search technique

to apply. five search techniques are studied: two Meta

heuristic search techniques (Hill Climbing and

Genetic Algorithms), together with three greedy

algorithms (Greedy, Additional Greedy, and 2-

Optimal Greedy). The results of the empirical study

show that the Additional Greedy, 2-Optimal, and

Genetic Algorithms always outperform the Greedy

Algorithm.

9. Test Case Prioritization: A Family of Empirical

Studies. - Sebastian Elbaum, Alexey G. Malishevsky,

Gregg Rothermel(2002) General prioritization that

tries to pick out a action at law order that may be

effective on the average over a succession of sequent

versions of the computer code. In regression testing,

they have a tendency to square measure involved

with a specific version of the computer code and that

they might need to place take a look at cases in an

exceedingly manner that may be handiest for that

version. A coarser granularity—for example, at the

operate level, wherever instrumentation and analysis

square measure a lot of economical. They expect,

however, that coarse roughness techniques are less

effective than fine roughness techniques and loss of

effectiveness might offset potency gains. Revealed a

large performance gap between the results achieved

by the prioritization techniques but they have a

tendency to examine and also the best results

accomplishable.

10. Adaptive Random Test Case Prioritization.- Bo

Jiang, Zhenyu Zhang, W. K. Chan, T. H. Tse(2009)

They proposed a set of ART prioritization techniques

guided by white-box coverage information. They also

conducted an empirical study to evaluate their

effectiveness. Rather than integrating with techniques

with the class of greedy algorithms, they choose to

study them in a standalone fashion so the

observations drawn from the study will be

independent of the latter techniques. The main

contribution of this paper is twofold: (i) it proposes

the first set of coverage-based ART techniques for

test case prioritization. (ii) It reports the first

empirical study on ART-based prioritization

techniques. The generate procedure constructs a set

of not-yet-selected test cases iteratively, by randomly

adding remaining test cases into the candidate set as

long as they can increase program coverage and the

 Distributed Testing Environment with Similarity based clustering by using PDS

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1852

candidate set is not yet full. The empirical results

show that their techniques are significantly more

effective than random ordering. Moreover, the ART-

br-max min prioritization technique is a good

candidate for practical use because it can be as

efficient and statistically as effective as traditional

coverage-based prioritization techniques in revealing

failures. Both genetic algorithms and their ART

techniques are effective in avoiding local maximums

commonly faced by greedy algorithms.

III.CONCLUSION OF LITERATURE

SURVEY

The above studies include various test case

prioritization techniques which prioritize the test

cases but they are not implemented in distributed

environment. The ordering of test cases in the

existing system vary in many ways but perfect

ordering is not available. The rate of fault detection is

less improved in the previous techniques but still

higher rate of fault detection is required.

IV.MOTIVATION OF RESEARCH

The motivation of our research is to provide an

efficient test case prioritization technique in

distributed environment.

 How to increase the rate of fault detection?

 How to implement test case prioritization

technique in distributed environment?

 How to cluster the test cases based on the

prioritization?

 How to avoid executing redundant test

cases?

 How to reduce the rate of execution time?

VI.PROPOSED WORK

A. Overall System Design

In our proposed system a simple login application

is taken for testing. Based on the content in the

application we need to write test cases. Test cases are

written based on the sequences of interactions

between the various fields involved in the

application. Each test cases generated will have a

unique ID. In order to predict the dependencies

between the test cases we use an algorithm namely

Dependency Structure Prioritization which consist of

four categories namely volume, height, weight and

the visit.

Based on this four dependency calculation, the

prioritization of test cases we need to calculate by the

DSP. By using the prioritized test cases we need to

calculate the cosine similarity i.e. the similarity

between the prioritized test cases. It is the vector

array matrix value of 0 & 1. Now the prioritization is

based on the two concepts of DSP and cosine

similarity hence the prioritization of test cases will be

higher and effective. Cluster the test cases based on

the prioritized values, cluster formation is used for

grouping the similar test cases with high priority each

clusters are executed independently on the distributed

environment. Execution in distributed environment

will be parallel in order to reduce the execution time.

Execute and evaluate the test cases to provide the

average rate of fault detection i.e. the fault rate.

V.COSINE SIMILARITY ALGORITHM

Cosine similarity is similarity between two vectors

of an inner product space that measures the cosine of

the angle between them. The cosine of 0° is 1, and it

is less than 1 for any other angle. The cosine value is

always between –1 and 1: the cosine of a small angle

is near 1, and the cosine of a large angle near 180

degrees is close to –1. The cosine similarity between

two vectors (or two documents on the Vector Space)

is a measure that calculates the cosine of the angle

between them. This metric is a measurement of

orientation and not magnitude. Two vectors with the

same orientation have a Cosine similarity of 1, two

vectors at 90° have a similarity of 0, and two vectors

diametrically opposed have a similarity of -1,

independent of their magnitude. Cosine similarity is

particularly used in positive space, where the

outcome is neatly bounded in [0, 1].

INPUT: an n*n Boolean adjacency matrix

representing test case list.

OUPTUT: an n*n Boolean adjacency matrix

representing the similarity matrix.

 Distributed Testing Environment with Similarity based clustering by using PDS

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1853

Fig 2 overall system design

Begin.

Step 1: collect the unique test case identity.

Step 2: collect the properties of the test cases.

Step 3: generate vector array.

Step 4: compute similarity matrix.

End.

1) Pseudocode for cosine similarity algorithm:

Input: IP_List, PropertiesList

Output : Similarity matrix

N= IP_List.size();

For I = 1 ; I = 1,2,3…N do

Ip1 = IP_List.get(I);

Properties pros = Ip1.getProperties();

 Vector V1 ;

For J = 1 ; j < PropertiesList.size(); J++ do

If(Properties.contains(PropertiesList.get(J)) then

V1 [i][j] = 1

Else

V1[i][j] = 0 ;

End If

End For

End For

For I = 1; I = 1, 2, 3…N-1 do

For J= 1; J = 1, 2, 3…N-1 do

Similarity[I][J]=(v1[I]*v1[J])/((mod(V1[I]))*

(mod(V2[J])))

End For

End For

Return Similarity;

VII.IMPLEMENTATION

This proposed system consists of five modules

they are listed:

 Test case generation.

 Dependency structure prediction.

 Prioritization of test cases.

 Cluster formation.

 Test case execution and evaluation.

A. Test Case Generation

In this module, first generate the test case for the

module testing of an application. This module is used

to find the sequence of interaction between the

software testing scenarios. The sequence of

interaction is used to predict the test case levels based

on the various fields provided in the application. This

helps to find the order of test cases. Generate the test

cases for the each software modules. Add the number

of test cases being generated to the test case list for

further testing process. Some testers may add the new

test cases after it has already been generated. Those

test cases will be listed below in order to modify the

existing test case list; any number of test cases can be

included. Add the number of test cases to the test

case list and assign ID for each test case. Additional

test cases are added using the remote server to

generate distinct ID.

B. Dependency structure prediction

Predict the Open and closed dependent structure

of the test cases independently. The sequencing in

scenarios represents the order in which the

interactions take place, enforcing dependencies

between interactions. Some interactions cannot occur

until and unless some other interactions occur first.

Based on the prediction, find the relationship

between the test cases in order to prioritize the test

cases later. The relationship predictions are based on

the fields involved in the application. This

relationship must be related to the previous ordering

of test cases. Compute the weight and height of the

test case structure for prediction of test cases. Predict

the functional dependency between the test cases to

form a dependency prediction matrix. It is an n*n

matrix which contains n number of test cases, the

matrix value will be the cross number of

dependencies between those two test cases. Compute

the height and weight of the test cases which is used

to form a DSP volume and DSP height matrix.

 Distributed Testing Environment with Similarity based clustering by using PDS

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1854

C. Prioritization of Test Cases

Dependency structure prioritization technique is

used to prioritize the test case by using four algorithm

namely 1) DSP volume measures gives higher weight

to test cases that have more dependents. 2) DSP

height measures gives higher weight to those test

cases that have deepest dependents.3) weighted_DFS

is used for test case prioritization based on

dependency strucutres. 4) weighted_DFS_visit is

used for finding the visiting vertices in the

dependency structure. Compute the similarity

between the test cases by using the cosine similarity

measurement. The prioritization is set based on the

prediction done earlier; higher priority is set to those

which have low height and high weight value. Vector

matrix is formed based on the priority values to find

similarity between the test cases. Cosine similarity

matrix includes the vector matrix values to form the

clusters based on similarity.

D. Cluster Formation

The similarity based clustering is used for

grouping the test cases in order to make testing

effective. A distributed environment is generated to

test the test cases. Distribute the test case groups in

the distributed environment. Perform the testing

process and generate the test results. After collecting

the test results apply the integration method to reduce

the results from distribute environment. This

proposed technique helps to achieve less computing

time for testing and also reduce the failure ratio for

testing software.

 Cosine similarity approach is used to form the

clusters. The clusters are used to implement in the

distributed system for providing better performance

in fault detection. The number of clusters must be

less than the number of distributed environment in

order to form the group of the clusters. This

implementation reduced the execution time.

E. Test case Execution and Evaluation

 Send the clustered test cases to the distributed

environment for execution. Execute the test cases and

evaluate the results to find the percentage of fault

detection by average rate of fault detection. Compare

the values with the existing system to prove that the

proposed system has higher accuracy in fault

detection.

VIII. EXPERIMENTAL RESULTS

The graph shown below is used to provide the

expected experimental results of the fault rate.

Fig 3 Average failure rate

Fig 4 accuracy of proposed system

It is used to provide the comparison between the

existing systems with the proposed system. The

expected accuracy of the system will be around 85-

90%.

IX.. CONCLUSION AND FUTURE WORK

Thus the proposed technique for prioritization of

test suites that contain dependencies between test

cases has been defined. Dependency structure

prediction and prioritization provides effective

prioritization of test cases. This cosine similarity

based clustering approach helps to increase the rate

of fault detection in distributed environment.

Through this we will achieve the Optimized time and

less error rate for the test case execution in the

distributed environment.

In future, this cosine similarity approach can be

implemented in the cloud environment like hadoop to

optimize the execution time for software testing in

the distributed environment.

 Distributed Testing Environment with Similarity based clustering by using PDS

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1855

REFERENCES

[1] Ryan Carlson, Hyunsook Do, Anne Denton (2011) ‗a

Clustering Approach to Improving Test Case prioritization: An
Industrial Case Study,‘ 27th IEEE International Conference on

Software Maintenance.

[2] K.P.N.V.Satya sree , Dr.J V R Murthy(2012) ‗ clustering based
on cosine similarity measure,‘ international journal of engineering

science and advanced technology.

[3] Shifa-e-Zehra Haidry and Tim Miller (2013) ‘Using
Dependency Structures for Prioritization of Functional Test suites,‘

IEEE transaction on software engineering.

[4] Neethi Narayanan, J.E.Judith, Dr.J.Jayakumari (2013)
‗Enhanced Distributed Document Clustering Algorithm Using

Different Similarity Measures,‘ IEEE Conference on Information

and Communication Technologies.
[5] Vikas Thada, Dr Vivek Jaglan (2013)‗Comparison of Jaccard,

Dice, Cosine Similarity Coefficient To Find Best Fitness Value for

Web Retrieved Documents Using Genetic Algorithm,‘
International Journal of Innovations in Engineering and

Technology.

[6] J.Jenny Li (2005) ‘Prioritize Code for Testing to Improve Code
Coverage of Complex Software,‘ IEEE transaction on software

reliability engineering.

[7] Xiao Qu, Myra B. Cohen, Katherine M. Woolf (2007)
‗Combinatorial Interaction Regression Testing: A Study of Test

Case Generation and Prioritization,‘ IEEE international conference
on software maintenance.

[8] Zheng Li, Mark Harman, and Robert M. Hierons(2007) ‗Search

Algorithms for Regression Test Case prioritization,‘ IEEE
transactions on software engineering.

[9] Sebastian Elbaum, Alexey G. Malishevsky, Gregg

Rothermel(2002) ‗Test Case Prioritization:A Family of Empirical
Studies,‘ IEEE transactions on software engineering.

[10] Bo Jiang, Zhenyu Zhang, W. K. Chan, T. H. Tse(2009)

‗Adaptive Random Test Case Prioritization,‘ IEEE international
conference on automated software engineering.

[11] X. Qu, M.B. Cohen, and K.M. Woolf (2007), ‘Combinatorial

Interaction Regression Testing: A Study of Test Case Generation
and Prioritization‘, Proceeding. IEEE Int‘l Conf. Software

Maintenance, pp. 255-264.

[12] Z. Ma and J. Zhao (2008), ‗Test Case Prioritization Based on
Analysis of Program Structure‘, Proceeding 15th Asia-Pacific

Software Eng. Conf, pp. 471-478.

