
Volume 2, No. 4, April 2011

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 76

EFFECTIVE SOFTWARE TESTING USING GENETIC ALGORITHMS

Kulvinder Singh
1
, Rekha Rani*

2
, Seema Rani

3
, Vedpal singh

4

CSE Dept. Kurukshetra University,

Kurukshetra,India

kshanda@rediffmail.com1, rekha_dove@rediffmail.com2, seemagure7@gmail.com3, vedpalsiet101@gmail.com4

Abstract: In this paper, we give the brief description about the software engineering and their methodologies. This paper also describes how we

can use genetic algorithms with software engineering. The advantages of the GA approach are that it is simple to use, requires minimal problem

specific information, and is able to effectively adapt in dynamically changing environments.

Keywords: Software Engineering, Genetic Algorithms.

INTRODUCTION

Software Engineering: The term software engineering first
appeared in the 1968 NATO Software Engineering

Conference, and was meant to provoke thought regarding

the perceived "software crisis" at the time[1]. Software

Engineering aim is the production of quality software,

software that are delivered on time, within budget, and that

satisfies user’s requirements. Software Engineering is the

application of science and mathematics by which the

capabilities of computer equipment are made useful to man

via computer programs, procedures and associated

documentation. The IEEE Computer Society's Software

Engineering Body of Knowledge defines "software
engineering" as the application of a systematic, disciplined,

quantifiable approach to the development, operation, and

maintenance of software, and the study of these approaches;

that is, the application of engineering to software[2].

Software Development Life Cycle: Task Scheduling in

Multiprocessor [1] [2] is a term that can be stated as finding

a schedule for a general task graph to be executed on a

multiprocessor system so that the schedule length can be

minimized. Multiprocessor scheduling [3] problems can be

classified into many different categories based on

characteristics of the program and tasks to be scheduled, the

multiprocessor system, and the availability of information.
Multiprocessor scheduling [2] problems may be divided in

two categories: Static and dynamic task scheduling. A static

or deterministic task scheduling is one in which precedence

constraints and the relationships among the task are known

well in advance While non-deterministic or dynamic

scheduling [3] is one in which these information is not

known in advance or not known till run time. A major factor

in the efficient utilization of multiprocessor system is the

proper assignment and scheduling of computational tasks

among processors. The problem can have many variations:

(i) The scheduling algorithm can be deterministic – also
known as static – or nondeterministic.

A deterministic task scheduling problem is defined as one in

which the knowledge related to tasks, their relations towards

each other, timing and the number of processors used are all

a prior knowledge. In a nondeterministic problem on the

other hand, all or some of these factors can be input-
dependent and vary according to run time conditions.

(ii) The tasks can be preemptive or non-preemptive.

A preemptive task scheduling problem allows the tasks to be

cut off from execution and another task to begin or continue

its execution cycle [operating system example. A non

preemptive problem in which task execution must be

completely done before another task takes control of the

processor.

(iii) The processors can be either homogenous or

heterogeneous.

Heterogeneity of processors means that the processors have
different speeds or processing capabilities. In a homogenous

environment on the other hand, all processors are assumed

to have equal capabilities. Efficient scheduling [8] of

application tasks is critical to achieving high performance in

parallel multiprocessor [9] systems. The objective of

scheduling is to map the tasks onto the processors and order

their execution. So that task precedence requirements are

satisfied and minimum schedule length (or Make span). The

most common heuristic methods are List Heuristics, such as

Earliest Task First (ETF) algorithm, Critical Path/Most

Immediate Successor First (CPMISF) algorithm, and

Dynamic Critical Path (DCP) algorithm etc. Another
heuristic method is genetic algorithm. A genetic algorithm

[7] is a domain-independent global search technique where

elements (called individuals) in a given set of solutions

(called population) are randomly combined until some

termination condition is achieved.

Genetic algorithms and other search techniques: Genetic

algorithms [10] [11] as powerful and broadly applicable

stochastic search and optimization techniques, are the most

widely known types of evolutionary computation [16] [11]

methods today. The father of the original Genetic Algorithm

was John Holland [13] who invented it in the early 1970's.
Other search techniques are: There are various techniques

available for searching and optimization GA is one of them.

Genetic Algorithms used for both searching and

mailto:vedpalsiet101@gmail.com4
http://en.wikipedia.org/wiki/Software_crisis
http://en.wikipedia.org/wiki/IEEE_Computer_Society
http://en.wikipedia.org/wiki/Software_Engineering_Body_of_Knowledge
http://en.wikipedia.org/wiki/Software_Engineering_Body_of_Knowledge
http://en.wikipedia.org/wiki/Software_Engineering_Body_of_Knowledge
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Engineering

Rekha Rani et al, Journal of Global Research in Computer Science,2 (4), April 2011, 17-28

© JGRCS 2010, All Rights Reserved 77

optimization. The techniques are shown in figure1. These

are:

i) Numerical Techniques: a). Direct Methods

b). Indirect Methods

ii) Guided random search techniques: a).

Simulated Annealing, b). Evolutionary

Algorithms

iii) Enumerative techniques: a). Dynamic

Programming

Figure1: Searching Techniques

METHODOLOGY - GENETIC ALGORITHM (GA)

Genetic algorithms (Goldberg, 1989) in particular became

popular through the work of John Holland [3] in the early

1970s, and particularly his book Adaptation in Natural and
Artificial Systems (1975).

Evolution flow of genetic algorithm

Genetic Algorithms (GAs) are adaptive heuristic search

algorithm [21] based on the evolutionary [16] ideas of

natural selection and genetics [11]. As such they represent

an intelligent exploitation of a random search used to solve

optimization [17] problems. Although randomized, GAs are

by no means random, instead they exploit historical

information to direct the search into the region of better
performance within the search space [14]. Figure represents

the GA evolution flow.

Figure 2: Evolution Flow of Genetic Algorithm

The data structure for genetic algorithms shown in figure

Figure 3 – Genetic Algorithms Data Structure

Basic Terms used in GA: Genes, Chromosome, Parameters,

Gene number, Population size, Search Space, Generations.

Basic Principle: The working principle [30] of a simple GA

is illustrated in Figure. The major steps involved are the

generation of a population [26] of solutions, finding the

objective function and fitness function and the application of

genetic operators [26]. These aspects are described briefly

below. They are described in detail in Genetic operators.

Figure 4: The Working Principle of a Simple Genetic Algorithm

An important characteristic of genetic algorithm [27] [26] is

the coding of variables that describes the problem. The most

common coding method is to transform the variables to a

binary string or vector; GAs performs best when solution

vectors are binary [11]

Features of a Genetic Algorithm

1. Stochastic - different results from different runs

2. Most often used to solve hard problems

3. Maintains a population of solutions

4. Solutions are encoded on chromosomes

5. Reproduction creates new population members

6. Mutation and recombination occur during reproduction

7. Survival of the fittest: better individuals have better

chance of reproducing.

What are the strengths of GAs? Following are the strengths
of genetic algorithms:

(i) Parallel Algorithm

First and most important point is that genetic algorithms

[11] are intrinsically parallel. Most other algorithms are

serial and can only explore the solution space to a problem

in one direction at a time, and if the solution they discover

turns out to be suboptimal, there is nothing to do but

abandon all work previously completed and start over.

However, since GAs have multiple offspring [17], they can

explore the solution space in multiple directions at once. If

one path turns out to be a dead end, they can easily eliminate
it and continue work on more promising avenues, giving

them a greater chance each run of finding the optimal

solution [14].

(ii) Many schemas at once

Due to the parallelism that allows them to implicitly

evaluate many schemas at once, genetic algorithms [28] are

particularly well-suited to solving problems where the space

of all potential solutions is truly huge - too vast to search

exhaustively in any reasonable amount of time. Most

problems that fall into this category are known as

"nonlinear". In a linear problem, the fitness [29] of each
component is independent, so any improvement to any one

part will result in an improvement of the system as a whole.

Needless to say, few real-world problems [21] are like this.

Nonlinearity is the norm, where changing one component

http://ewh.ieee.org/soc/es/May2001/14/GAPROC0.GIF

Rekha Rani et al, Journal of Global Research in Computer Science,2 (4), April 2011, 17-28

© JGRCS 2010, All Rights Reserved 78

may have ripple effects on the entire system, and where

multiple changes that individually are detrimental may lead

to much greater improvements in fitness when combined.

(iii) Global optimum solution

Another notable strength of genetic algorithms [19] is that

they perform well in problems for which the fitness

landscape [23] is complex - ones where the fitness function

is discontinuous, noisy, changes over time, or has many

local optima. Most practical problems have a vast solution
space, impossible to search exhaustively; the challenge then

becomes how to avoid the local optima solutions [23] that

are better than all the others that are similar to them, but that

are not as good as different ones elsewhere in the solution

space. Many search algorithms [25] can become trapped by

local optima: if they reach the top of a hill on the fitness

landscape, they will discover that no better solutions exist

nearby and conclude that they have reached the best one.

Evolutionary algorithms [16], on the other hand, have

proven to be effective at escaping local optima and

discovering the global optimum [23] in even a very rugged

and complex fitness landscape. (It should be noted that, in
reality, there is usually no way to tell whether a given

solution to a problem is the one global optimum or just a

very high local optimum. However, even if a GA does not

always deliver a provably perfect solution to a problem, it

can almost always deliver at least a very good solution.

(iv)Multiple parameters problem

Another area in which genetic algorithms [23] excel is their

ability to manipulate many parameters simultaneously.

Many real-world problems cannot be stated in terms of a

single value to be minimized or maximized, but must be

expressed in terms of multiple objectives [17], usually with
tradeoffs involved: one can only be improved at the expense

of another. GAs are very good at solving such problems: in

particular, their use of parallelism enables them to produce

multiple equally good solutions to the same problem,

possibly with one candidate solution optimizing one

parameter [26] and another candidate optimizing a different

one and a human overseer can then select one of these

candidates to use.

(v) Knowledge does not required

Finally, one of the qualities of genetic algorithms [23] which

might at first appear to be a liability turns out to be one of

their strengths: namely, GAs know nothing about the
problems they are deployed to solve. Instead of using

previously known domain-specific information to guide

each step and making changes with a specific eye towards

improvement, as human designers do, they are "blind

watchmakers"; they make random changes to their candidate

solutions [11] and then use the fitness function [14] to

determine whether those changes produce an improvement.

What are the limitations of GAs? Following are the

limitations of genetic algorithms:

Although genetic algorithms have proven to be an efficient

and powerful problem-solving strategy, they are not a
panacea. GAs [23] does have certain limitations; however, it

will be shown that all of these can be overcome and none of

them bear on the validity of biological evolution.

(i) Representation for the problem

The first, and most important, consideration in creating a

GA is defining a representation [11] for the problem. The

language used to specify candidate solutions must be robust;

i.e., it must be able to tolerate random changes such that

fatal errors or nonsense do not consistently result.

There are two main ways of achieving this. The first, which

is used by most genetic algorithms, is to define individuals

[23] as lists of numbers - binary-valued, integer-valued, or

real-valued - where each number represents some aspect of a

candidate solution. If the individuals [23] are binary strings,

0 or 1 could stand for the absence or presence of a given

feature. If they are lists of numbers, these numbers could
represent many different things: the weights of the links in a

neural network, the order of the cities visited in a given tour,

the spatial placement of electronic components, the values

fed into a controller, the torsion angles of peptide bonds in a

protein, and so on.

(ii) Fitness Function representation

The problem of how to write the fitness function [11] must

be carefully considered so that higher fitness is attainable

and actually does equate to a better solution for the given

problem. If the fitness function [23] is chosen poorly or

defined imprecisely, the genetic algorithm may be unable to

find a solution to the problem, or may end up solving the
wrong problem. (This latter situation is sometimes described

as the tendency of a GA to "cheat", although in reality all

that is happening is that the GA [28] is doing what it was

told to do, not what its creators intended it to do.) An

example of this can be found in Graham-Rowe 2002, in

which researchers used an evolutionary algorithm [17] in

conjunction with a reprogrammable hardware array, setting

up the fitness function to reward the evolving circuit for

outputting an oscillating signal. At the end of the

experiment, an oscillating signal was indeed being produced

- but instead of the circuit itself acting as an oscillator, as the
researchers had intended, they discovered that it had become

a radio receiver that was picking up and relaying an

oscillating signal from a nearby piece of electronic

equipment.

(iii) Problem of choosing the various parameters like the

Size of the population, the rate of mutation and crossover,

Selection scheme

In addition to making a good choice of fitness function [23],

the other parameters of a GA - the size of the population

[26], the rate of mutation and crossover [25], the type and

strength of selection - must be also chosen with care. If the

population size is too small, the genetic algorithm may not
explore enough of the solution space to consistently find

good solutions.

(iv) Deceptive fitness functions

One type of problem that genetic algorithms [23] have

difficulty dealing with are problems with "deceptive" fitness

functions, those where the locations of improved points give

misleading information about where the global optimum is

likely to be found.

 (v) Premature convergence

One well-known problem that can occur with a GA [24] is

known as premature convergence [23]. If an individual that
is more fit than most of its competitors emerges early on in

the course of the run, it may reproduce so abundantly that it

drives down the population's diversity too soon, leading the

algorithm to converge on the local optimum [17] that that

individual represents rather than searching the fitness

landscape thoroughly enough to find the global optimum.

http://www.talkorigins.org/faqs/genalg/genalg.html#graham2002

Rekha Rani et al, Journal of Global Research in Computer Science,2 (4), April 2011, 17-28

© JGRCS 2010, All Rights Reserved 79

APPLICATIONS OF GENETIC ALGORITHM

Applications

A heuristic search technique used in computing and

Artificial Intelligence [3] to find optimized solutions to

search problems using techniques inspired by evolutionary

[16] biology: mutation, selection, reproduction [inheritance]

and recombination.

(i) Engineering Design

Figure 6: Engineering Drawing

Getting the most out of a range of materials to optimize the

structural and operational design of buildings, factories,

machines, etc. is a rapidly expanding application of GA

[10]. These are being created for such uses as optimizing the

design of heat exchangers , robot gripping arms, satellite

booms, building trusses, flywheels, turbines, and just about

any other computer-assisted engineering design application.

(ii) Robotics

Figure 7: Robotics Designing

Robotics involves human designers and engineers trying out

all sorts of things in order to create useful machines that can

do work for humans.

(iii) Optimized Telecommunications Routing

Do you find yourself frustrated by slow LAN performance,

inconsistent internet access, a FAX machine that only sends

faxes sometimes, your land line's number of 'ghost' phone

calls every month? Well, GAs [10] are being developed that

will allow for dynamic and anticipatory routing of circuits

for telecommunications networks..

(iv) Biometric Invention

Figure 8: Biometric Invention

Biomimicry or biomimetics is the development of

technologies inspired by designs in nature. Since GAs [11]

is inspired by the mechanisms of biological evolution, it

makes sense that they could be used in the process of

invention as well.

(v) Trip, Traffic and Shipment Routing

New applications of a GA [21] known as the "Traveling

Salesman Problem" or TSP can be used to plan the most

efficient routes and scheduling for travel planners, traffic

routers and even shipping companies.

(vi) Computer Gaming

Those who spend some of their time playing computer Sims

games (creating their own civilizations and evolving them)

will often find themselves playing against sophisticated

artificial intelligence GAs [10] instead of against other
human players online.

(vii) Encryption and Code Breaking

Figure 9: Encryption and Code Breaking

On the security front, GAs [23] can be used both to create

encryption for sensitive data as well as to break those codes.

Encrypting data, protecting copyrights and breaking

competitors' codes have been important in the computer

world ever since there have been computers, so the

competition is intense.

(viii) Gene Expression Profiling

Figure 10: Gene Expression Profiling

The development of micro array technology for taking

'snapshots' of the genes being expressed in a cell or group of

cells has been a boon to medical research. GAs [11] has

been and is being developed to make analysis of gene [23]

expression profiles much quicker and easier.

(ix) Finance and Investment Strategies

In the current unprecedented world economic meltdown one

might legitimately wonder if some of those.

(x) Marketing and Merchandising

We could think the word 'merchandising' just the way Mel

Brooks said it in the "Space Balls" the movie. Space Balls

the toilet paper. Space Balls the lunchbox. Space Balls the

flame thrower (the kids love this one). And laugh because

it's close enough to reality to be funny.

(xi) Solving Multi-Objective Optimization Problems in

Chemical Engineering

Figure 10: A Distillation Tower

Any real-world optimization [10] [13] problem involves

several objectives. Chemical engineering [46] is no

Exception. Chemical processes, such as distillation (as

shown in figure), refinery operations, polymerization, etc.,

http://brainz.org/15-real-world-applications-genetic-algorithms/
http://brainz.org/15-real-world-applications-genetic-algorithms/
http://en.wikipedia.org/wiki/Telecommunications_network
http://brainz.org/15-coolest-cases-biomimicry/
http://brainz.org/15-real-world-applications-genetic-algorithms/
http://brainz.org/15-real-world-applications-genetic-algorithms/
http://www.aip.org/isns/reports/2002/060.html
http://www.aip.org/isns/reports/2002/060.html
http://www.aip.org/isns/reports/2002/060.html
http://learninggames.wordpress.com/2008/01/04/biologically-inspired-artificial-intelligence-for-computer-games/
http://learninggames.wordpress.com/2008/01/04/biologically-inspired-artificial-intelligence-for-computer-games/
http://learninggames.wordpress.com/2008/01/04/biologically-inspired-artificial-intelligence-for-computer-games/
http://www.wipo.int/pctdb/en/wo.jsp?IA=US2000040826&DISPLAY=DESC
http://www.wipo.int/pctdb/en/wo.jsp?IA=US2000040826&DISPLAY=DESC
http://www.wipo.int/pctdb/en/wo.jsp?IA=US2000040826&DISPLAY=DESC
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/17/12/1131
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/17/12/1131
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/17/12/1131

Rekha Rani et al, Journal of Global Research in Computer Science,2 (4), April 2011, 17-28

© JGRCS 2010, All Rights Reserved 80

involve a number of process parameters which are to be set

for achieving certain properties in the final product.

 (xii) Genetic Algorithm in Polymer Science and

Engineering

Multiple-objective [23] functions have been optimized

simultaneously. An example is the minimization of the

reaction time in a reactor (lower costs) while simultaneously

minimizing [24] the concentration of side products (that

affect the properties of the product adversely).

(xiii) Genetic Algorithms in Stock Market Data Mining

Optimization

In stock market, a technical trading rule [59] is a popular

tool for analysts and users to do their research and decide to

buy or sell their shares. The key issue for the success of a

trading rule is the selection [27] of values for all parameters

and their combinations.

 (xiv) Genetic algorithm for cluster analysis

A simple encoding scheme that yields to constant-length

chromosomes is used. The objective function [58]

maximizes both the homogeneity within each cluster and the

heterogeneity among clusters.

CONCLUSION

The problem of scheduling of tasks to be executed on a

multiprocessor system is one of the most challenging

problems computing. Genetic algorithms are well adapted to

multiprocessor scheduling problems. As the resources are

increased available to the GA, it is able to find better

solutions. GA performs better as compared to other

traditional methods. Overall, the GA appears to be the most

flexible algorithm for problems using multiple processors. It
also indicates that the GA is able to adapt automatically to

changes in the problem to be solved.

REFERENCES

[1] G. Syswerda and J. Palmucci, “The application of

genetic algorithms to resource scheduling”, Proceedings

of the Fourth International Conference on Genetic

Algorithms and Their Applications, pages 502-508, San

Mateo, CA, July 1991.

[2] G. A. Cleveland and S. F. Smith, “Using genetic

algorithms to schedule flow shop releases”, Proceedings
of the Third International Conference on Genetic

Algorithms and Their Applications, pages 160-169, San

Mateo, CA, June 1989.

[3] J. H. Holland, “Adaptation in Natural and Artificial

Systems”, The University of Michigan Press, Ann Arbor,

MI, 1975.

[4] Cottet, F., Delacroix, J, Kaiser, C., Mammeri, Z.,

“Scheduling in Real-time Systems”, John Wiley & Sons

Ltd, England, 2002.

[5] Goldberg, David E, “Genetic Algorithms in Search,

Optimization and Machine Learning”, Kluwer Academic

Publishers, Boston, 1989.
[6] Mitchell, Melanie, “An Introduction to Genetic

Algorithms”, MIT Press, Cambridge, MA. 1996.

[7] L.M.Schmitt, “Fundamental Study Theory of Genetic

Algorithms”, International Journal of Modelling and

Simulation Theoretical Computer Science. 2001.

[8] C. V. Ramamoorthy , "Optimal scheduling strategies

in a multiprocessor system," IEEE Trans. Computers, vol.

C-2I.,Feb. 1972.

[9] I. H. Kasahara and S. Narita, "Practical

multiprocessing scheduling algorithms for efficient

parallel processing," IEEE Transactions on Computers,

1998.
[10] Carnegie-Mellon, “Genetic Algorithms and Their

Applications”, Proc. of the First Int. Conference, July 24-

26, 1985.

[11] Dr. Franz Rathlauf, “Representations for Genetic and

Evolutionary Algorithms”, 2nd edition, @ Springer. 2006.

 [12] S. Beaty, “Genetic algorithms and instruction

scheduling”, Proceedings of the 24th Microprogramming

Workshop (MICRO-24), Albuquerque, NM, November

1991.

[13] John J. Grefenstette, “Genetic Algorithms and Their

Applications”, Proc. 2nd Int. Conf, July 28-31, 1987, MIT,
Cambridge,1987.

[14] Davis, “Handbook of Genetic Algorithms”, Van

Nostrand Reinhold, 1991.

[15] E. Hou, R. Hong, and N. Ansari, "Multiprocessor

scheduling based on genetic algorithms" Dept of ECE,

New Jersey Institute of Technology, Technical Report, Aug.

1990.

[16] Michalewicz, “Genetic Algorithms + Data Structures

= Evolution Programs”, Springer, 1996.

[17] Goldberg D., “Genetic Algorithms in Search,

Optimization, and Machine Learning”, Addison-Wessley

publishing company Inc., 1989.
[18] Allen, F. & Karjalainen, “Using Genetic Algorithms

to Find Technical Trading Rules”. Journal of Financial

Economics, 1999.

