
Volume 2, No. 7, July 2011

Journal of Global Research in Computer Science

RESERCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 79

EFFICIENT AUDIO PROCESSING IN ANDROID 2.3

Kailash Pathak* and V.P. Singh
Computer Science & Engineering Department

Thapar University, Patiala

*kailashiete@gmail.com

Abstract: Android is a new mobile platform for mobile development, it is open platform. It has a rich set of applications. Audio/video is become

very important part for the success of any mobile platform. Every day new idea is come in to the picture to improve the quality of audio/video.

A part from quality, battery power management is also important. Battery power is always on the top of the requirement stack. In android

multimedia architecture, audio effects are handling with Advance RISC Processor (ARM), which is core processor of mobile device. Many

multimedia applications are handled by ARM processor so result is more battery power consumption due to availability of large multimedia

application. In this research paper, a new algorithm is proposed for the audio routing to save the battery power. The audio effects will be

integrated with the help of digital signal processor instead of ARM processor. The power consumption of this application is tested and proposed

architecture takes less power as compare to the present architecture.

Key words: Android, Multimedia, Audio Routing, ARM

INTRODUCTION

Digital audio effects are used in various audio applications,

such as multi-effectors, and mobile audio devices [2]. The

main goal of digital audio effects is the modification of the

sound characteristic of the input audio signal. There are

many audio effect algorithms such as reverb, virtualizer, and

stereo widening, Bass boost.

Related Work

There has been done huge research work for application-

level optimizations for mobile phones. Matt Calder et al.

illustrated the significant energy savings that can be

achieved via batch scheduling of recurrent mobile phone

applications. Recurrent applications are primarily

characterized by repeated execution, mostly as a

background process, to perform a task periodically. A

secondary characteristic is that these applications are also

delay tolerant. For phones with deep sleep modes, there is

also a cost in terms of time for the phone to wake up and go

to sleep. When these recurrent applications are left to

schedule themselves independently of other recurrent

applications, they can have a very negative impact on

battery life by bringing the phone out of sleep mode an

unnecessary number of times [3]. Xiao et al. has explored

the power characteristics of 3G and Wi-Fi but focus on

mobile YouTube viewing [25]. Haitao Wul et al. has been

discussed the Power saving Mode (PSM) with integrated

Wi-Fi (Network Interface Card), in their research work they

proposed footprint, leveraging the Cellular information such

as the overheard cellular tower IDs and signal strength. The

number of unnecessary scans through the changes and

history logs of the mobile user’s location has been studied.

Android Media Layers

Maoqiang et al. explored the android media layers as

shownin Figure [1].

Figure 1. Android media layers

Media layers are used to control the playback of audio and

video. Binder and IBinder perform inter process

communication in android. Audio Flinger does mixing and

resembling of android data during the audio processing.

AUDIO ROUTING IN ANDROID PLATFORM

The management of audio routing is scattered among

various applications and services such as: Phone

Application, Advanced Bluetooth Audio Distribution Profile

Service (BluetoothA2dpService), Audio Service, With

regards to routing the phone can be in one of three modes:

NORMAL, RINGING, IN_CALL. The mode is selected by

the Phone Application via Audio Manager set Mode (). To

each of these modes corresponds a routing of the audio

output to one of the following audio devices such as:

Kailash Pathak, Journal of Global Research in Computer Science Volume 2 No. (7), July 2011, 79-82

© JGRCS 2010, All Rights Reserved 80

Speaker, Earpiece, Headset, Bluetooth Synchronous

Connection Oriented (BT SCO). Audio (acoustic) post/pre-

processing is controlled by Audio hardware according to the

requested routing. The routing can be modified by some

services or applications Phone Application (enable/disable

BT SCO, enable/disable speaker phone), Headset Observer

(enable/disable headset). An additional layer of routing is

added for A2DP headset: A2DP output is enabled/ disabled

by BluetoothA2dpService via audio manager, and handled

by Audio Flinger. Audio Flinger uses a second mixer thread

and hardware interface dedicated to A2DP.

Audio Flinger

Audio Flinger is mainly in charge of resembling and mixing

audio streams (Audio Tracks) and sending the mix to the

audio output at the Audio Hardware Interface. Audio

Tracks have a stream type attribute that is used to control

common volume settings and some routing decisions. The

stream types are: MUSIC, RINGTONE, NOTIFICATION,

ALARM, VOICE_CALL, and BLUETOOTH_SCO. It

supports only two hardware interfaces; each one with a

single audio output stream, one output is for bluetooth

A2DP devices, the other one for all other audio devices

attached to the platform (Speaker, Earpiece, Headset, and

Bluetooth SCO). Hardware and A2DP outputs can be active

simultaneously, the output to which a given track is sent is

selected based on the stream type (MUSIC, SYSTEM,

VOICE_CALL go to A2DP if enabled). The Hardware

output is duplicated to the A2DP output when active.

AUDIO ROUTING

It Support multiple hardware outputs and inputs

simultaneously. Support direct forwarding of audio input

stream to hardware output. Audio routing is transparent

process by Audio Flinger. By default no mixing, no

sampling rate converter (SRC) to optimize performance for

low sampling rate (SR) applications. Application such as:

voice over IP (VOIP) has separate control of audio input

and output routing.

Compressed Audio Processing

Android multimedia framework has compressed audio APIs

for processing compressed audio, applications can send

compressed audio directly to hardware to enable some kind

of hardware tunneling mode. When A2DP headset is

connected or low power mode is selected the switching

to/from hardware tunneling to software/hardware decode

mode is performed. Hardware tunneling do faster decoding

than real-time decoding,

Audio framework Feeds a large pulse coded modulation

(PCM) buffers to allow more frequent power collapse and

power savings. It provides the controls of volume and audio

post processing to the hardware tunneling.

Audio Effects: These effects provide a software

implementation of environmental reverberation and graphic

equalizer effects. Allow insertion of audio effect plug-ins on

each track and replacement of default SRC algorithms. It

also provides APIs to get/set hardware acoustic parameters

for pre/post process implemented in audio hardware.

Routing Manager

As stated above, routing management in current

implementation is scattered in different layers and modules

of the media framework, making it hard to understand and

maintain. The proposal of this research is to regroup all the

routing intelligence under a single routing manager. Other

applications or services won't send direct routing requests

anymore to Audio Manager but instead will send events

(e.g. indicating a state change or a device connection) that

will be processed by the routing manager and transformed

to a routing request send to audio hardware layer. Routing

manager gives the control of the physical audio source

device to the application in virtual mode, which is not

directly visible to the application. The routing strategy

becomes more complex implementation of different layers

or modules.

Routing Work Flow: Routing modifications take place

when a change in some variables governing a given strategy

occurs:

a) A removable device is connected/disconnect. For

instance when playing music and a wired headset is

connected: reroute output from speaker to headset.

b) The phone state changes: Simultaneous output of a

ring tone to both speakers and headset by opening a

second output routed to headset if the phone state

changes to RINGING.

c) The user selects speaker On/Off from in the call

screen: The output is routed to speaker Phone Routing

decision for each track follows the applicable strategy.

Routing decisions can yield to:

a) Opening/closing a secondary hardware output: A

default output is always active but if the use case

requires a second output, a new one is opened.

b) Reroute an existing output to a different device or set

of devices

c) Route a track directly to a hardware output. This can

happen if the audio format is compressed or if explicitly

requested when opening the track.

COMPRESSED AUDIO ARCHITECTURE

The power efficient rendering of compressed audio via

hardware tunneling is a key feature missing from vanilla

media framework implementation. The implementation of

this feature is not trivial because of the following issues:

a) The behaviour depends on actual hardware capabilities

There must be some means to retrieve those capabilities

and strategies defined for both cases where hardware

tunnelling is supported or not.

b) The behaviour depends on current phone state, it may

not be possible to use hardware tunnelling if the user

interface (UI) is active and precise progress information

must be displayed. This implies that smooth transition

from/to hardware tunnelling mode must be provided.

c) Software mixer has volume and mute controls, which

are apply as per the stream type.

d) The proposed solution must enable the use of hardware

tunnelling for content types that are not handled by

packet video (PV) opencore.

The proposal is based on the addition of support for

compressed audio formats to Audio Tracks. An Audio

Track opened with a compressed format will be handled by

Kailash Pathak, Journal of Global Research in Computer Science 2 (7), July 2011, 01-03

© JGRCS 2010, All Rights Reserved 81

a dedicated mixer thread in Audio Flinger connected

directly to a compressed audio output at the Audio

Hardware Interface. This mixer thread will coexist with

other mixer threads handling the mixing of PCM Audio

Tracks to PCM output streams at the Audio Hardware

Interface. The change implies that compressed format is also

supported at the Audio Hardware Interface level. The Audio

Hardware and audio driver implementations must provide

means to forward compressed audio to audio DSP at the

same time as providing usual PCM output for streams

handled by the software mixers. If the platform implements

an openmax integration layer (IL) framework to manage

hardware accelerated resources or hardware mixers, the

audio output can be wrapped in a source component. Media

Player Service and open core are required to automatically

select playback over hardware tunneling.

In this research work two algorithms for bass booster and

virtualizer audio effects have been discussed. Reverb effect

can be implemented by the same idea as bass booster and

virtualizer effect.

Algorithm of Bass Booster Audio Effect

Step1: Realizing the SL Engine in synchronous mode. If this

fails call Exit On Error (Boolean).

Step 2: Set the source of audio data to play apply Data

sinks for the audio player set the Interfaces for the audio

player.

Step 3: Create output mix object which is used by the player

and set the Output Mix Object in synchronous mode.

Step 4: Configuration of the player, Set arrays required []

and iid Array[] for required Interfaces with default TRUE

Step 5: Setup the data source structure for the URI

locator_Field_descriptor.locator_Type

Step 6: Create the audio player, to play the file and if any

error occurs call Exit On Error (error_result).Realize the

player in synchronous mode.

Step 7: Start the data prefetching by setting the player and

Wait until there's data to play.

Step 8: Set duration

SL_millisecond duration In Msec =

SL_TIME_UNKNOWN;

Step 9: Configure Bass Boost

Step 10: Make sure player is stopped, Destroy the player

object, Destroy Output Mix object.

Algorithm for Virtualizer Audio Effect

Step 1: Realizing the SL Engine in synchronous mode, If it

get fails call Exit On Error (),

Step 2: Objects this application uses: one player and an

ouput mix, and give Source of Audio data to play.

Step 3: Data sinks for the audio player SL Data Sink

audio Sink;

SLData Locator_OutputMix locator_outputmix;

Play and Prefetch Status interfaces for the audio player.

Step 4: Get the SL Engine Interface which is implicit

Step 5: Configuration of the output mix, Create Output Mix

object to be used by the Player Realize the Output Mix

object in synchronous mode. Setup the data Sink structure.

Step 6: Set arrays required [] and iidArray [] for SL Prefetch

StatusItf interfaces SLPlayItf is implicit.

Step 7: Setup the data source structure for the URI

Step 8 : Create the audio player, if it fails call Exit On

Error ();

Step 9: Realize the player in synchronous mode and Get the

SL Play Itf, SL Prefetch StatusItf and SL Android Stream

TypeItf interfaces for the player.

Step 10: Playback and test, Start the data prefetching by

setting the player To the paused state. Wait until there's data

to play.

Step 11: Start playback

Step 12: Configure Virtualizer

Step 13: Switch Virtualizer on/off every TIME_S_ BET

WEEN_VIRT_ON_OFF

Step 14: Make sure player is stopped, if it fails call Exit On

Error (result);

Step 15: Destroy the player object.

Destroy Output Mix object.

RESULTS AND DISCUSSION

The main objective of this research work is to reduce the

power consumption in the android multimedia framework, It

is observed from figures 2- 4 that the audio effects, bass

booster, reverb and virtualizer takes less power using the

proposed audio routing algorithm as compared to present

multimedia framework.

Figure 2. Power consumption in unit time for Bass booster effect.

Figure 3. Power consumption in unit time for Reverb effect.

Kailash Pathak, Journal of Global Research in Computer Science Volume 2 No. (7), July 2011, 79-82

© JGRCS 2010, All Rights Reserved 82

Figure 4. Power consumption in unit time for virtualizer effect.

CONCLUSION

It is evident from the results that the power consumption by

proposed audio routing algorithm is reduce by the 20%

power of mobile battery as compare to the present audio

routing algorithm. The proposed framework may be further

extended in android multimedia to accelerate the audio

effects and more power gain.

REFERENCES

[1] Maoqiang Song, Wenkuo Xiong, Xiangling Fu,

Research on Architecture of Multimedia and Its Design

Based on Android, Internet Technology and

Applications, 2010 International Conference,

Wuhan 20-22 Aug. 2010, pp 1 – 4.

[2] Kyungjin Byun, Young-Su Kwon, Seongmo Park, and

Nak-Woong Eum “Digital Audio Effect System-on-a-

Chip Based on Embedded DSP Core”, ETRI Journal,

Vol 31, Number 6, December 2009 pp 732-740.

[3] Matt Calder and Mahesh K. Marina “Batch Scheduling

of Recurrent Applications for Energy Savings on

Mobile Phones” Sensor Mesh and Ad Hoc

Communications and Networks (SECON), 2010 7th

Annual IEEE Communications Society Conference

on, 21-25 June 2010. 978-1-4244-7151-5/10/$26.00

©2010.

[4] Y. Xiao, R. Sri Kalyanaraman, A. Yla-Jaaski. “Energy

Consumption of mobile YouTube: Quantitative

Measurement and Analysis” 2008 the Second

International Conference on Next Generation Mobile

Applications, Services, and Technologies, pp.61-69,

[5] H. Wu, K. Tan, J. Liu, and Y. Zhang. “Footprint:

Cellular Assisted Wi-Fi AP Discovery on Mobile

Phones for Energy Savings.” In Proc. ACM

WiNTECH, 2009

[6] Yu-Sheng Lu, Chin-Ho Lee, Hung-Yen Weng, Yueh-

Min Huang “Design and Implementation of digital TV

widget for Android on multi-core platform” Computer

Symposium (ICS), 2010 International, Tainan 16-18

Dec. 2010,pp 576 – 580.

