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ABSTRACT— In this paper, we formalize the problem of Basic Graph Pat-tern (BGP) optimization for 
SPARQL queries and main memory graph implementations of RDF data. We define and analyze the 
characteristics of heuristics for selectivity based static BGP optimization. The heuristics range from 
simple triple pattern variable counting to more sophisticated selectivity estimation techniques. 
Customized summary statistics for RDF data enable the selectivity estimation of joined triple patterns 
and the development of efficient heuristics. Using the Lehigh University Benchmark (LUBM), we 
evaluate the performance of the heuristics for the queries provided by the LUBM and discuss some of 
them in more details. 
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I. INTRODUCTION 
 

SPARQL is an RDF query language, that is, a query language for databases, able to retrieve and manipulate data 
stored in Resource Description Framework format. The SPARQL query processor will search for sets of triples that match 
these four triple patterns, binding the variables in the query to the corresponding parts of each triple.we focus on 
selectivity-based static Ba-sic Graph Pattern (BGP) optimization for SPARQL queries [and main memory 
graph implementations of RDF [9] data. In SPARQL, a BGP is a set of triple patterns where a triple 
pattern is a structure of three components which may be concrete (i.e. bound) or variable (i.e. 
unbound). The three components which form a triple pattern are respec-tively called the subject, the 
predicate and the object of a triple pattern. Sets of triple patterns, i.e. Basic Graph Pat-terns, are 
fundamental to SPARQL queries as they specify the access to the RDF data. 

 
Query optimization is a fundamental and crucial subtask of query execution in database 

management systems. We focus on static query optimization, i.e. a join order optimization of triple 
patterns performed before query evaluation. The optimization goal is to find the execution plan 
which is expected to return the result set fastest without actually executing the query or subparts. This 
is typically solved by means of heuristics and summaries for statistics about the data. 

 
The problem we are going to tackle in this paper is best explained by a simple example. 

Consider the BGP displayed in Listing 1 which represents a BGP of a SPARQL query executed over 
RDF data describing the university domain. Typically, there are a number of different subjects 
working, teaching, and studying at a university (e.g. staff members, professors, graduate, and 
undergraduate students). They are all of type Person in our RDF dataset. We know that the dataset 
contains a huge number of RDF resources of type Person among others of type Publication, Course, 
Room. 
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The OWL schema ontology used to describe the vocabulary for the RDF dataset states that the 
property for the social security number is inverse functional. Therefore, the object of the property 
uniquely determines the subject. Hence, the second triple pattern in our BGP of Listing 1 matches 
only one subject with the social security number ”555-05-7880”. Our schema ontology specifies 
further that the domain of the social security number property is a class of type Person. Therefore, we 
can state that the subject with social security number ”555-05-7880” is of type Person (or our data is 
inconsistent). 

 
 

The focus in our work is on main memory graph implementations of RDF data (i.e. in-memory 
models). Currently most RDF toolkits support both in-memory and on-disk models. Relational 
database management systems (RDBMS) are commonly used as persistent triple stores for on-disk 
models. Because of the fundamentally different architectures of in-memory and on-disk models, the 
considerations regarding query optimization are very different. Whereas query engines for in-memory 
models are native and, thus, require native optimization techniques, for triple stores with RDBMS back-
end, SPARQL queries are translated into SQL queries which are optimized by the RDBMS. It is not 
our goal in this paper to analyze optimization techniques for on-disk models and, hence, we are not 
going to compare in-memory and on-disk models. Furthermore, we focus on the evaluation of the 
presented optimization techniques without comparing the figures with the performance of alternative 
implementations. A comparison of implementations requires a comprehensive study that goes beyond the 
scope of this pa-per. In fact, the query performance of query engines is not just affected by static query 
optimization techniques but, for instance, also by the design of index structures or the accuracy of 
statistical information. Finally, our focus is on static query optimization techniques. Hence, we do not 
discuss optimal index structures for RDF triple stores, neither in-memory nor on-disk, as this too is a 
research topic that goes beyond the scope of this paper. 

 
 

Listing 1: Example BGP 
 

?x rd f : type uv : Person . 
?x uv : hasSocialSecuri tyNumber ”555−05−7880 

 
 

Our focus on main memory graph implementations, i.e. in-memory models, has an important 
limitation: scaling. In-deed, the few gigabytes of main memory clearly limit the size of RDF data 
which may be processed in main memory. Therefore, we might question the relevance of studying 
optimization techniques for RDF in-memory models. We argue, that in-memory models are 
important for a number of reasons. First, optimized queries on in-memory models run much faster 
than on-disk. Second, 64-bit architectures pose virtually no more limits to the theoretical amount of 
main memory in computers. Third, in a cluster, distributed in-memory models could be used for 
parallel query evaluation. Finally, optimization techniques and customized summary statistics of RDF 
data are important for native RDF persistent stores as they do not rely on relational database 
technology and, hence, require a native optimizer. 

 
 

II. RELATED WORK 
 

The execution time of queries is heavily influenced by the number of joins necessary to find the 
results of the query. Therefore, the goal of query optimization is (among other things) to reduce the 
number of joins required to evaluate a query. Such optimizations typically focus on histogram-based 
selectivity estimation of query conditions. 
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Piatetsky et al. introduce in the concept of selectivity estimation of a condition. In Selinger et al. 

present the System R optimizer, a dynamic programming algorithm for the optimization of joins. 
Likewise, POSTGRES implements an exhaustive search optimization algorithm. In con-trast, INGRES 
introduced an optimization technique based on query decomposition. Estimation of conditions are often 
supported by histogram distributions of attribute values. More recently, developments in deductive and 
ob-ject oriented database technology showed the need for more cost-effective optimization techniques  as 
the traditional techniques work well for queries with only a few relations to join. Steinbrunn et al. 
summarizes and analyzes in randomized algorithms for the problem of query optimization where the 
overall goal is to search the solution space for the global minima moving randomly between connected 
solutions according to certain rules. Further, the authors de-scribe deterministic, genetic and hybrid 
algorithms as techniques for the problem of cost effective query optimization. PostgreSQL is and 
example of an open source databases system experimenting with genetic algorithms for query 
optimization. 

 
Related to the Semantic Web, Pérez et al. analyze in the semantics and complexity of SPARQL. 

Harth et al. investigate the usage of optimized index structures for RDF. The authors argue that 
common RDF infrastructures do not support specialized RDF index structures. The index proposed 
by the authors supports partial keys and allows selectivity computation for single triple patterns. 
Hartig et al. [8] present a SPARQL query graph model (SQGM) which supports all phases of query 
processing, especially query optimization. The authors refer to a discussion on the Jena mailing list 
which showed that a simple rearrangement of a SPARQL query leads to an improvement of factor 220. 

 
III. PROPOSED SYSTEM 

 
BGP Abstraction. As discussed in Section 3.1, we abstract  a BGP as an undirected graph B which is 

characterized by the connected components g ∈ G, where each g is an ordered pair g = (N, E) consisting of a set N of 
triple patterns (i.e. the nodes of g) and a set E of triple pattern pairs (i.e. joined triple patterns/edges of g). The connected 
graph g ∈ G represents a subset of (transitively) joined triple patterns of B. In the following we describe the algorithm for 
the optimization of g = (N, E). 
 

Based on the BGP abstraction for g ∈ G, we perform a variation of the deterministic minimum selectivity 
approach to identify the execution plan pg which is optimal according to the algorithm and the selectivity estimations. The 
optimization algorithm constructs a solution in a deterministic manner applying a heuristic search. Eventually, the 
algorithm identifies an order for the elements of the set N (i.e. triple patterns). Note that this is not a total order on N. The 
triple patterns in the resulting execution plan are not necessarily ranked by estimated selectivity. 
 

Optimization Algorithm. In Algorithm 1, we provide  the pseudo-code for the core optimization algorithm. The 
algorithm first selects the edge with minimum estimated selectivity from g = (N, E). The corresponding nodes are marked 
as visited and added to the final execution plan pg ordered by estimated selectivity, i.e. the more selective node is added 
first to the execution plan. After selecting the first edge e ∈ E, the core optimization algorithm iteratively selects the edge 
which satisfies the two properties (1) minimum estimated selectivity and (2) visited node. With each iteration a new node 
is added to the final execution plan. The property of minimum estimated selectivity is motivated in the deterministic 
minimum selectivity optimization approach according to which good solutions are generally characterized by selective 
intermediate results. The second property, i.e. visited node, ensures the iterative selection of a triple pattern, i.e. a node n ∈ 
N, which joins with the previous partial execution plan. This is an important characteristic of good execution plans as 
result sets will never 

 
Algorithm 1 Find optimized execution plan EP for g ∈ G 
N ← Nodes(g) 
E ← Edges(g) 
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EP[size(N)] 
e ← SelectEdgeMinSel(E) 
EP ← OrderNodesBySel(e) 
while size(EP) ≤ size(N) do 
e ← SelectEdgeMinSelV isitedNode(EP,E) 
EP ← SelectNotV isitedNode(EP, e) 
end while 
return EP 
Figure 1: Optimized DAG d1 ∈ D with highlighted 
node with only outgoing directed edges 
 

Therefore, at each stage of query processing the intermediate result sets are iteratively constrained. The algorithm 
terminates when all nodes n ∈ N have been visited and the optimal execution plan pg, i.e. a well defined order for the 
elements of N, is returned as a result. Directed acyclic graphs of execution plans which satisfy the second property, i.e. 
visited node, of the edge selection process for BGP abstractions described above, feature a common characteristic: there is 
only one node that has only outgoing directed edges, i.e. the node which is executed first in the execution plan. Nodes 
with only outgoing directed edges do not join with the previous partial execution plan and, hence, result in a Cartesian 
product of two intermediate result sets. For instance, the execution plan which executes the triple patterns of Listing 2 top-
down, abstracted as DAG creates two Cartesian products for the intermediate result sets of the first three triple patterns 
(highlighted by the three nodes labeled 1, 2, and 3 which are nodes with only outgoing directed edges). In contrast, the 
optimized execution plan, abstracted as DAG in does never create Cartesian products of intermediate result sets. This is 
highlighted by the DAG in Figure 3 with one node with only outgoing directed edges (i.e. node 5). This  node represents 
the first triple pattern in the optimized execution plan for the BGP in Listing 2. 
 

Selectivity Estimation Heuristics. In order to decide the selection of edges during the optimization process, the 
core optimization algorithm requires figures about the selectivity of graph patterns. The extensible pool of selectivity 
estimation heuristics is the component intended to provide the required selectivity figures to the core optimizer. Heuristics 
are used to weight the nodes and edges of a BGP abstraction. Given a weighted connected graph g ∈ G the core 
optimization algorithm is able to proceed with  the iterative selection of nodes based on the deterministic 
minimum selectivity optimization approach described above. 
 

IV. RESULT AND DISCUSSION 
 
 The Lehigh University Benchmark (LUBM) is developed to facilitate the evaluation of Semantic Web 
repositories in a standard and systematic way. The LUBM data set is a benchmark data set designed to enable researchers 
to evaluate a semantic web repository’s performance . The LUBM data generator generates data in RDF/XML 
serialization format. Therefore, we convert the data to N-Triples to store the data, because with that format, we have a 
complete RDF triple (Subject, Predicate, and Object) in one line of a file . 
  

V. CONCLUSION 
The paper summarizes the research we have been doing on static Basic Graph Pattern (BGP) 

optimization based on selectivity estimation for main memory graph implementations of RDF data. 
 

We formalized the problem of BGP optimization and we presented the architecture for the 
optimizer that has been implemented for ARQ. Further, we discussed a number of heuristics for the 
selectivity estimation of joined triple patterns. The heuristics range from simple variable counting 
techniques to more sophisticated selectivity estimations based on the probabilistic bound predicates 
should not be considered as joins. Framework that builds on top of tailored summary statistics for 
RDF data. 
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As the evaluation clearly showed, the characteristics of the heuristics greatly influence the selected ordering of 
the triple patterns of a BGP and, hence, the query execution performance. In our experience, we found the following 
properties of heuristics to be important for the problem of BGP optimization. First, the optimizer should avoid Cartesian 
products as intermediate result sets. Second, the selectivity should not be limited in lower bound estimation. Third, the 
selectivity of joined triple patterns should be a function of the estimated selectivity of the join (i.e. the size of the result 
set) and the selectivity of the more selective triple pattern involved in the join. Finally, as we noticed multiple times, 
bound predicates should not be considered as joins. 
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