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Abstract: The Internet service is managed by operators and each one tries to capture larger proportion of Internet traffic. This tendency causes 

inherent competition in the market. The location of the market in also an important factor. This paper assumes two different markets and two 

operators are in competition. It is found that elasticities value depend on market position. The priority position market has higher level. This 

paper present Elasticities analysis of traffic sharing pattern among operators. Simulation study is performing to analyze the Elasticities impact 

on traffic sharing. 
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INTRODUCTION  
 

We assume a situation that there are two markets situated at 

distant apart in a city. Both the markets have Internet café 

with connection of two operators, Ou (u=1,3) and Ov 

(v=2,4). A user has a choice to pickup one market based on 

his liking and then selected the favourate operators in the 

Internet café. Both operators are in competitions to occupy 

more and more proportion of internet users. The network of 

both operators is suffering from blocking. The matter of 

interest is to know how blocking probability affects the 

customer proportion in the setup of two markets.  Elasticities 

means rate of change of one variable with respect to other 

when many other parameters are kept constant. The traffic 

sharing by two operators is a variable and needs to examine 

in the light of Elasticities. This paper presents Elasticities 

based analysis of internet traffic sharing in multi operator and 

multi markets environment. 

 

A REVIEW 

Shukla et al. (2007) discussed analysis of internet traffic 

distribution between two markets using Markov chain model 

in computer networks. This contribution has initiated the 

problem of traffic sharing in two-market environment. 

Shukla et al. (2009) has extended the above approach by 

incorporating the share loss analysis of internet traffic 

distribution. Medhi (1991) discussed the basic fundamentals 

of Markov chain model. Shukla et al. (2009 b) presented all 

comparison analysis of internet traffic sharing using Markov 

chain model which is an extension of Naldi (2002). Catledge 

and Pitkow (1995) discussed a contribution on 

characterization of browsing strategies. Pirolli and pitkow 

(1996) suggested usable structure for web in light of many 

users. A similar study performed by pitkow (1997) regarding 

search of reliable usage data on www. Naldi (2001) 

presented Markov chain model based study in a 

multioperator environment. The detail distribution of Markov 

chain model is in Medhi (1991) and web browsing details are 

in Han and Kamber (2001). Shukla et al. (2007) discussed 

stochastic model for space decision switches for computer 

network. Shukla et al. (2007 a, b, c) suggested the use of 

Markov chain model in networking and operating system 

analysis. Shukla and Jain (2007) used Markov chain model 

for the analysis of multilevel Queue Scheduler in the 

operating system. Shukla and Singhai (2010 a) discussed 

traffic share analysis of massage flow in three crossbar 

architecture space division switches. Deshpande & Karypis 

(2004) discussed selective Markov chain model for 

predicting webpage access. Shukla et al. (2010 a, b, c, d, e, f, 

g, h) discussed different aspects on Markov chain model in 

determining the system behavior. Shrivastava et al. (2000) 

presented a thought oriented contribution on web page 

mining discovery and application of usage patterns from web 

data. 

 

MARKOV CHAIN MODEL 

 

Let {Xn, n � 0} be a Markov chain model. As per Fig 3.1, let 

O1, O2, O3 and O4 be operators (ISP) in the two 

competitive Market-I (M1) and Market-II (M2). User 

chooses a market first, and then enters into a cyber-café 

situated inside. Where computer terminals of different 

operators are available to access the Internet. Operators are 

grouped as Ou (u=1,3) and Ov (v=2,4) for market-I and 
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market-II Let{X(n)
, n>0} be a Markov chain having 

transitions over the state space M1, M2 and {O1, O2 , O3 , 

O4, Z1,  Z2, A} 

State O1: First operator in market-I, 

State   O2:    Second operator in market-I,  

State   O3:  Third operator in market-II, 

State    O4:  Fourth operator in market-II, 

State    Z1: Success (link) in market-I (M1)  

State    Z2: Success (link) in market- II (M2) 

State   A: Abandon the attempt process. 

The X(n) stands for the state of random variable X at nth  

attempt of connectivity (n > 0) made by the user. Some 

underlying assumptions of the Markov chain model are:  

(a) A User (or Customer or CU) first select the Market-I 

with probability q and Market-II with probability (1-q), (see 

Fig 3.1) 

(b) After choosing a market, User enters in the cyber-café 

(shop), chooses the first operator Ou with probability p or to 

Ov  with (1-p). 

(c) Blocking probability experienced by the operator Ou  are 

L1 & L3 and by Ov are L2  & L4  

(d) The connectivity attempts by user between operators are 

on call-by-call basis, if the call for Ou is blocked in kth 

attempt (k >O) then in (k + 1)th attempt user shifts to Ov. If 

this also fails, user   switches to Ou in (k+2)th. 

(e) Whenever call connects through either of operators Ou 

or Ov, we say system reaches to the state of success in n 

attempts.  

 

(f) User can terminate the attempt process which is marked 

as system to the abandon state Z at nth attempts with 

probability pA (either Ou or from Ov). 

 

 
Fig.3.1 Explains the transition mechanism with transition probability matrix in (3.1) 

                                                          States 

                                                            X
(n)

 

     O1           O2           O3           O4           Z1         Z2     A         M1    M2 

 

O1 0      L1(1-pA )  0          0         1- L1    0   L1 PA        0    0    

O2     L2(1-pA )  0   0              0         1- L2     0         L2pA     0    0 

O3     0            0              0            L3(1-pA )   0       1- L3   L3 pA   0    0     

O4      0              0              L4(1- PA )   0           0       1-L4     L4PA   0    0    

X
(n-1)

       Z1        0            0   0       0          1         0          0         0    0 

Z2        0            0   0       0          0         1          0         0    0 

      A         0            0   0       0          0         0         1         0    0  

      M1       p            1-p   0       0          0         0         0         0    0 

      M2       0            0   p       1-p          0         0         0         0    0              

          

  

SOME USEFUL RESULTS FOR nth CONNECTIVITY 

ATTEMPTS 

 

Theorem 1.0 : The odd and even nth step probability for O1 

in Market –I is: 

(Even)
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 1
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  Figure.1 Transition Diagram of model.  
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Proof: For n=0 at M1, we have P[X(0)=M1]=q 

The start is either from O1 or from O2 after choosing M1, 

therefore, 

p q
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The continuation provides proof of theorem for nth odd and 

even attempts. 

Theorem 1.1: The nth step transitions probability for O2 in 

Market -1 is: 

(Even)

]])p-[(1  )[p-(1 p q ]O P[x 2-n

AAM2

)(n

 1
==

(Odd)

]])p-[(1  p)[-(1 q  ]O (n)p[x 1-n

AM2 1
==

 

Theorem 1.2: The nth step transitions probability for O3 in 

Market-II is:  

( )

] )p-[(1 
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A
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Theorem 1.3: The nth step transitions probability for O4 in 

Market-II is:  

( )
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A
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QUALITY OF SERVICE [QOS] 

 

 There are two types of users as: 

Faithful User [FU] 

 

A user who is faithful to an operator Ou only otherwise he 

goes to abandon state but does not attempt for Ov. The 

converse of it may as he attempts for OV only and goes to 

state A otherwise. 

 

Impatient User [IU] 

              

 A user who attempts between the two Operators Ou and Ov 

only all the time until call complete or otherwise abandons 

the process. 

]L p)-(1 L [p q)-(1  ]p)L-(1 L [p q  B 4 32 1f +++=  

 

ELASTICITY STUDIES OVER LARGE ATTEMPT 

Let p1 be the traffic sharing by the first operator, p2 be the 

traffic sharing by the second operator using Markov chain 

model using Naldi (2002), Shukla et al. (2007) we can 

obtain the expressions of traffic sharing as: 
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If y=f (x, z) is function then elasticity of y with respect to z 

is 
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Differentiate with respect to L1 we get 
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Differentiate with respect to L2 we get 
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Differentiate with respect to L1 we get 
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Differentiate with respect to L2 we get 
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Differentiate with respect to L1 we get 
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Differentiate with respect to L2 we get 
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Differentiate with respect to L1 we get 
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Differentiate with respect to L2 we get 
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SIMULATION STUDY 
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In view to fig. 1.0 the elasticities of the traffic share of the 

first operator in the first market is going down with the 

increasing level blocking probability. However if opponent 

operator also bears the same in increasing patterns, then the 

elasticity curve is further lower down. 
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According to fig. 2.0, when pA probability is little high the 

similar pattern exists at the higher down fall level. If 

opponent bears higher level of blocking then the elasticity 

has negative trend. 
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When to consider the opponent blocking probability as a 

base (fig 3.0) the trend is linear and by increasing L2 the 

elasticity bears positive sign. If L1 is also high with L2, the 

rate of linear increment becomes small. 
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But when pA is little high (fig. 4.0) the curves are sifted 

toward higher values with similar trend. This is observed in 

the first market. 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 Fig (5.0) Blocking probability L1 

(p=0.5,  q=0.4,  pA =0.2)

 E
la

st
ic

it
y 

f 
(.)

L2=0.3 L2=0.5 L2=0.7

 
 



Diwakar Shukla et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011, 

© JGRCS 2010, All Rights Reserved   10 

While to consider traffic sharing of second operator, the 

elasticities pattern is in upward trend as in case of first 

market. With the increase of opponent L2 this pattern 

remains the same but elasticity value is lower. 
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When pA probability is high (fig. 6.0) the more stable pattern 

is found. In this case elasticities are looking like 

independent to L1 variation. 
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Fig. (7.0, 8.0) are similar type but having L2 probability as 

variant. These graphs are similar to figure (5.0, 6.0) but 

differ for traffic share p2 of O2. 
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Fig. (9.0, 10.0) are showing elasticities pattern for third 

operator bearing the blocking probability L1. The trend is 

downward and sharper than earlier cases. For little high L2 

level this goes further down. 
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Fig. (11.0-12.0) are similar but with respect to L2 probability 

for P3 of operator O3 is high in the second market. Both the 

curves are having increasing Elasticities over L2 and 

decreasing probability level over L1. 
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Fig. (13.0-14.0) are similar to fig. (11.0, 12.0) and showing 

the positive value of elasticity. When pA is high then value 

of positive elasticity is also high. 
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Fig. (15.0, 16.0) are matching to fig. (9.0, 10.0) and the 

pattern of elasticity is downward showing a sharp decrement 

in the tendency. 

 

CONCLUDING REMARKS  

 

The Elasticities of traffic share of operator depends on 

blocking probability. These are negative in trend but when 

opponent blocking is high the negativity becomes high. 

Elasticities value depends on market position. If a market is 

of high priority, it has higher elasticities level. The abandon 

probability affects the elasticity level. High abandon chance 

produces stable pattern of traffic share independent to the 

blocking probability. 
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