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ABSTRACT: This paper proposes a modified Order crossover operator for genetic algorithm that generates high
quality solutions to the Traveling Salesman Problem (TSP) effectively. As the main time consuming process of
crossover operator and schemata preserving process in crossover is the hole filling done in Order Crossover operator,
so if the swath size is not to be too long and also depending on the problem size then it might be proven to find near
optimum solutions in effective and efficient manner. The Modified Order Crossover operator constructs an offspring
from a pair of parents using the existing Order Crossover operator with the enhancement on swath length (the size of a
chromosome which is between two crossover sites). The efficiency of the Modified Order Crossover is compared as
against some of the existing crossover operators; namely, Partially Mapped Crossover (PMX), Order Crossover (OX)
& Cyclic Crossover (CX) for some benchmark TSPLIB instances. Experimental results suggest that the new crossover
operator enabled improved results compared to the PMX, OX and CX for the five Travelling salesman problems tested.
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. INTRODUCTION

The Traveling Salesman problem (TSP) is one of the benchmark and old problems in Computer Science and
Operations Research. It can be stated as: A network with ‘n’ nodes (or cities), with 1 node as main node and a travel
cost (or distance, or travel time etc.,) matrix C= [C;] of order n associated with ordered node pairs (i, j) is given. The
problem is to find a least cost Hamiltonian cycle. On the basis of the structure of the cost matrix, the TSPs are classified
into two groups — symmetric and asymmetric. The TSP is symmetric if Cj;= Cj;, Vi,j and asymmetric otherwise. For an
n-city asymmetric TSP, there are (n —1)! possible solutions for all n > 2, one or more of which gives the minimum
cost. For an n-city symmetric TSP, there are (n —1)! / 2 possible solutions for all n > 2 along with their reverse cyclic
permutations having the same total cost. In either case the number of solutions becomes extremely large for even
moderately large n so that an exhaustive search is impracticable. There are mainly three reasons why TSP has been
attracted the attention of many researcher’s and remains an active research area. First, a large number of real-world
problems can be modeled by TSP. Second, it was proved to be NP-Complete problem [1]. Third, NP-Complete
problems are intractable in the sense that no one has found any really efficient way of solving them for large problem
size. Also, NP-complete problems are known to be more or less equivalent to each other; if one knew how to solve one
of them one could solve all of them. The TSP finds application in a variety of situations such as automatic drilling of
printed circuit boards and threading of scan cells in a testable VLSI circuit [2], X-ray crystallography [3], etc. The
methods that provide the exact optimal solution to the problem are called exact methods. An implicit way of solving the
TSP is simply to list all the feasible solutions, evaluate their objective function values and pick out the best. However it
is obvious that this “exhaustive search” is grossly inefficient and impracticable because of vast number of possible
solutions to the TSP even for problem of moderate size. Since practical applications require solving larger problems,
hence emphasis has shifted from the aim of finding exactly optimal solutions to TSP, to the aim of getting,
heuristically, ‘good solutions’ in reasonable time and ‘establishing the degree of goodness’. Genetic algorithm (GA) is
one of the best heuristic algorithms that have been used widely to solve the TSP instances. In this paper, A Modified
Order Crossover operator is proposed and accordingly a genetic algorithm based on Modified Order Crossover is
developed for solving the TSP. This paper is organized as follows: Section 2 describes a genetic algorithm
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Methodology. Section 3 describes related work on the problem. Section 4 describes proposed genetic algorithm based
on Modified Order Crossover operator. Section 5 describes computational experiments for Modified Order Crossover
and some of the existing crossover operators. Finally, Section 6 presents comments and concluding remarks.

Il. GENETIC ALGORITHM

Genetic algorithms (GAs) are based essentially on mimicking the survival of the fittest among the species generated by
random changes in the gene-structure of the chromosomes in the evolutionary biology [4]. In order to solve any real life
problem by GA, two main requirements are to be satisfied: (a) a string can represent a solution of the solution space,
and (b) an objective function and hence a fitness function which measures the goodness of a solution can be constructed
/ defined.

A simple GA works by randomly generating an initial population of strings, which is referred as gene pool and then
applying operators to create new, and hopefully, better populations as successive generations. The first operator is
selection where strings are copied to the next generation with some probability based on their objective function value.
The second operator is crossover where randomly selected pairs of strings are mated, creating new strings. The third
operator, mutation, is the occasional random alteration of the value at a string position. The crossover operator is the
most powerful process in the GA search. Mutation diversifies the search space and protects from loss of genetic
material that can be caused by reproduction and crossover. So, the probability of applying mutation is set very low,
whereas the probability of crossover is set very high.

The search of the solution space is done by creating new chromosomes from old ones. The most important search
process is crossover. Firstly, a pair of parents is randomly selected from the mating pool [5]. Secondly, a point, called
crossover site, along their common length is randomly selected, and the information after the crossover site of the two
parent strings are swapped, thus creating two new children. Of course, this basic crossover method is not applicable for
the TSP as it may repeat some of the cities lying on different sides of parents and may ignore some of the cities also, so
new crossover operators are designed for TSP problems.

I1l. RELATED WORK

Since the crossover operator plays a vital role in GA, so many crossover operators have been proposed for the TSP.
Goldberg and Lingle [6] defined an operator called PMX (partially mapped crossover). This operator first randomly
selects two cut points on both parents. In order to create an offspring, the substring between the two cut points in the
first parent replaces the corresponding substring in the second parent. Then, the inverse replacement is applied outside
of the cut points, in order to eliminate duplicates and recover all cities. Consider two possible codings of a tour of eight
cities, Al and A2.
Al-35127684
A2-18543627
Two positions are determined randomly along the Al coding. The actual cities located between the same positions
along A2. For example, if the positions three and five are chosen, the sub-coding alone Al 1-2-7 and the sub-coding
along A2 is 5-4-3. Each of these cities is then exchanged, leading to the new tours A1’ and A2’.
Al’-71543682
A2°-58127643
This PMX operator was the first attempt to apply GA to the TSP, in which they found near-optimal solutions to a well-
known 33-node problem.
The OX (ordered crossover) operator developed by Davis [7] builds offspring by choosing a subsequence of a tour
from one parent and preserving the relative order of nodes from the other parent.
For example, if two parents are selected as below for crossover:
Parent1: 436251978
Parent2: 647152983
and let crossover sites are chosen as 2 and 6. PMX produce following child's:
Child1:437152968
Child2:746251983
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while OX produce following child's:

Child1:367152984

Child2:476251983
Another crossover operator, named CX (cycle crossover) operator was proposed by Oliver et al. [8], where offspring
are built in such a way that each node (and its position) comes from one of the parents. Whitley et al. [9] proposed edge
recombination crossover (ERX) operator that uses an ‘edge map’ to construct an offspring that inherits as much
information as possible from the parent structures. This edge map stores all the connections from the two parents that
lead into and out of a node. A crossover operator based on the conventional N-point crossover operator, named as
generalized N-point crossover (GNX), was proposed by Radcliffe and Surry [10]. Poona and Carter [11] developed a
tie break crossover (TBX), which was then modified by Choi et al. [12] by combining PMX and TBX operators. Moon
et al. [13] proposed a new crossover operator named Moon Crossover (MX), which mimics the changes of the moon
such as waxing moon — half moon — gibbous — full moon. As reported, performance of MX operator and OX
operator is almost same, but OX never reached an optimal solution for all trials.

IVV. PROPOSED GENETIC ALGORITHM

A. Genetic coding

To apply a GA for any optimization problem, one has to think a way for encoding solutions as feasible chromosomes
so that the crossovers of feasible chromosomes result in feasible chromosomes. The techniques for encoding solutions
vary by problem and, involve a certain amount of art. For the TSP, a solution is typically represented by chromosome
of length as the number of nodes in the problem.

Each gene of a chromosome takes a label of node such that no node can appear twice in the same chromosome. There
are mainly two representation methods for representing tour of the TSP: adjacency representation and path
representation. Path representation for a tour is considered in this model which simply lists the label of nodes. For
example, let {1, 2, 3, 4, 5} be the labels of nodes in a 5 node instance, then a tour {1— 3—4— 2— 5 —1} may be
represented as (1, 3, 4, 2, 5).

B. Fitness function
The GA is usually used for optimization problems and TSP is an optimization problem; a function f(x) which calculates
cost of the tour represented by the chromosome ‘x’ is considered as fitness function for that chromosome.

C. Selection operator

In selection process, chromosomes are copied into next generation mating pool with a probability associated with their
fitness value. By assigning to next generation a higher portion of the highly fit chromosomes, selection mimics the
Darwinian survival-of-the-fittest in the natural world.

In natural population, fitness is determined by a creature’s ability to survive predators, pestilence, and other obstacles to
adulthood and subsequent reproduction. In this phase no new chromosome is produced. The commonly used
reproduction operator is the proportionate reproduction operator, where a string is selected for the mating pool with a
probability proportional to its fitness value. Roulette Wheel selection method is used as selection operator in this study.

D. Modified OX crossover operator (MOX)

The modified OX crossover (MOX) operator constructs an offspring from a pair of parents using the existing OX
operator with the enhancement on swath length. As the main time consuming process of crossover operator and
schemata preserving process in crossover is the hole filling done in OX operator, so if the swath size is not to be too
long and also depending on the problem size then it might be proven to find near optimum solutions in effective and
efficient manner. In crossover operator the length of a substring is chosen randomly. Thus on an average, the length is
equal to n/2. A big swath will lead to a marked increase in the computational time as more work to do, which can be
reduced if the length of the substring for performing crossover can be fixed to a small value. An attempt is made in this
article for determining an appropriate value of the length of a substring for performing crossover. A number of
experiments are done to find such a value in this research and it is found that a substring length ‘I’ for MPMX provides
good results for TSP if | = max{3, f}, where n/9 < <n/7 (where n is the total number of cities). Obviously one can
tune the constants according to the problem.
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Holland's schema theorem is widely taken to be the foundation for explanations of the power of genetic algorithms. It
says that short defining length, low-order schemata with above-average fitness increase exponentially in successive
generations. The order of a schema o(H) is defined as the number of fixed positions in the template, while the defining
length d(H) is the distance between the first and last specific positions. Goldberg and Lingle introduced the partially
mapped crossover (PMX) operator and the notion of ordering schemata, or o-schemata. For 0-schemata, the symbol ‘!’
acts as a wild card match symbol. Thus the below template represents all permutations with one at third place, three at
sixth place and seven at seventh place out of eight places. A ‘!” in chromosome below represent any of the remaining
cities.

rr1r 371

Above schema has order 3 and defining length of 5. Given o selected positions in a permutation of length I, there are (I
— 0)! permutations that match an o-schemata. One can also count the number of possible o-schema. There are clearly
(f)) ways to choose o fixed positions; there are also (f)) ways to pick the permutation elements that fill the slots, and o!

ways of ordering the elements, that is the number of permutations over the chosen combinations of sub elements. Thus
Goldberg [4] and Goldberg and Lingle [6] note that the total number of o-schemata n,s can be calculated by:
l

I I
flos = Z ((l S TITRNG —j)!)

j=l
Note that in this definition of the o-schemata, relative order is not accounted for. If relative order is also considered
than all of the following shifted o-schemata could be viewed as equivalent:

r1 37

T3 7 11

P13 701

P11y 37
The OX operator takes the swath elements from second parent and then fills the holes accordingly in the first child. As
the swath size denotes the order of schemata and other holes denotes the wild card character in child. On an average the
swath size is chosen randomly and is approximately n/2 which makes the schemata of high order and long defining
length so an attempt is made to make the schemata short which fits the fundamental theorem of genetic algorithms.
Three more crossover operators — Partially Mapped Crossover (PMX), Order Crossover (OX) & Cyclic Crossover (CX)
for producing offspring using the same pair of parents P1 and P2 are considered for comparison.
E. Mutation operator
The mutation operator randomly selects a position in the chromosome and changes the corresponding allele, thereby
modifying information. The need for mutation comes from the fact that as the less fit members of successive
generations are discarded; some aspects of genetic material could be lost forever. By performing occasional random
changes in the chromosomes, GA ensure that new parts of the search space are reached, which selection and crossover
alone couldn’t fully guarantee. In doing so, mutation ensures that no important features are prematurely lost, thus
maintaining the mating pool diversity. For the TSP, the classical mutation operator does not work. For this
investigation, the reciprocal exchange mutation that selects two nodes randomly and swaps them has been considered.

F. Replacement

After performing crossover and mutation operation replacement method is used for selecting next generation
population. The replacement of GA considers two kinds of chromosomes for the next generation: (1) parents in current
population of size m, and (2) offspring that are generated by crossover of size m. The (u,A) replacement method that
replace chromosomes in (1) by (2) completely is considered. In this case, all the p parents in the present generation are
replaced with next generation.

G. Control parameters

There are a lot of parameters that govern the GA search process. Some of them are:

(i) Population size: - It determines how many chromosomes and thereafter, how much genetic material is available for
use during the search. If there is too little, the search has no chance to adequately cover the space. If there is too much,
the GA wastes time evaluating chromosomes.
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(ii) Crossover probability: - It specifies the probability of crossover occurring between two chromosomes.
(iif) Mutation probability: - It specifies the probability of doing mutation.
(iv) Termination criteria: - It specifies when to terminate the genetic search.

V. COMPUTATIONAL EXPERIMENTS

For comparing the efficiency of the different crossover operators in genetic algorithm using MOX, PMX, OX and CX
have been encoded in MATLAB 2013b on a Pentium Core i5 personal computer with speed 2.1 GHz and 4 GB RAM
under UBUNTU 12.04, and for many TSPLIB [14] instances. Initial population is generated randomly.

The following common parameters are selected for the algorithms: population size is 700, Population size is set to very
high to obtain exact solution as was done by Whitley et al. [9] probability of crossover is .80 (i.e., 80%), probability of
mutation is 0.01 (i.e., 1%), and maximum of 1,000 generations as the terminating condition. The experiments were
performed 30 times for each instance. Several instances of TSP problem are taken from TSPLIB [14] for experiments
and results are shown below in figures and tables:

The problem instances are coded with various crossover operators and time to run the algorithms is measured based on
CPU seconds elapsed since the algorithm starts to the end output it produced. Based on these facts following results are
popped on random runs of all instances.

Genetic Algorithm with various Crossover operators on TSP instance
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Figurel: Minimum tour in each generation for TSP instance oliver30
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Figure2: Minimum tour in each generation for TSP instance att48
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TABLE I: Minimum tour cost in each generation of various crossover operators with example TSP problem
instances taken from TSPLIB

TSP instance | o;Of | Known PMX OX CX MOX Figure
cities optimum

Oliver3o 30 423 748 680 850 430 Fig.1

Att48 48 10628 78578 77498 98376 36758 Fig.2

Eil51 51 426 960 978 1150 450 Fig.3

Eil76 76 538 1750 1727 1846 657 Fig.4

Eil101 101 629 2510 2607 2787 1227 Fig.5

A

VI. CONCLUSION

modified OX crossover operator (MOX) for a genetic algorithm for the Traveling Salesman Problem (TSP) has been

proposed. A comparative study among MOX, PMX, OX and CX for some benchmark TSPLIB instances has been
provided. In terms of quality of the solution, for all the instances MOX found to be better in terms of solution quality
and the overall time taken by the algorithm. Among all the operators, experimental results show that Modified OX
crossover operator (MOX) is better than the PMX, OX and CX, in terms of quality of solutions as well as execution
time.

Any local search technique is not used to improve the solution quality. So an incorporation of good local search
technique to the algorithm may solve exactly more instances, which is under consideration.
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