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ABSTRACT: The Fast Fourier Transform (FFT) requires high Computational power, ability to choose the algorithm 
and architecture to implement it. This project explains the realization of a 3/6 FFT processor based on a pipeline 
architecture. The implementation has been made on a Field Programmable Gate Array (FPGA) as a way of obtaining 
high performance at economical price and a short time of realization.  FPGA can be used with segmented arithmetic of 
any level of pipeline in order to speed up the operating frequency. The processor has been simulated up to 200 MHz, 
with an Xilinx Spartan 3E as a target device, for a transform length of 6 complex points. To combine the higher 
parallelism of the 6-FFTs and the possibility of processing sequences having length of any power of 6.The 
simultaneous operation of multipliers and adder-subtracters implicit in the 3/6 FFT, leads to faster operation at the same 
degree of pipeline. The 3/6 FFT algorithm is implemented in Xilinx FPGA Spartan 3E. 

 
KEYWORDS: Fast Fourier transform (FFT), Field Programmable Gate Array (FPGA), 3/6 FFT.  

I. INTRODUCTION 
 

 Discrete Fourier transform (DFT) is one of the most important tools used in almost all fields of science and 
engineering, DFT can be implemented with efficient algorithms generally classified as fast Fourier transforms (FFT). 
The most widely used approaches are so-called the algorithms for 6m , such as radix-3, radix-6 and split radix FFT 
(SRFFT). Considerable researches have carried out and resulted in the rapid development on this class of algorithms. 
The algorithm decompose the DFT into one length-N/3 and four length-N/6 sub-DFT . The flexibility of the 
decomposition enables the algorithm be competent at the implementation of a non-power-of-six DFT, while its length 
can exactly divided by 6. Appropriate permutations are used for sub-DFTs input sequences to reduce the computational 
intension.The rest of the brief is organized as follows. Section II Related work Section III proposed system Section IV 
Performance analyzes Section V System implementation Section VI Hardware Result Section VII Simulation Output  
Section VIII conclusions and the future works. 

II. RELATED WORK 
 
The [3] author presents a general split radix algorithm which can flexibly compute the discrete Fourier transforms 

(DFTs) of length qx2m,q=odd integer. Comparisons with previous reported algorithms show that substantial savings on 
arithmetic operations can be made furthermore, a wider range of choices on different sequence length is naturally 
provided. The sequence is divided into odd indexed and even indexed terms and computed using derived formulas. 
Multiplication of non-trivial twiddle factors which are needed by other algorithms are not required since the derived 
format does not have non-trivial twiddle factors. The [4] author proposes an algorithm in which the number of 
operations required is lower than that required by the other algorithms. This conjugate pair FFT algorithm is, which 
keeps the in-place property is based on the conjugation of multiplication co-efficient and hence it termed as conjugate 
pair FFT. In this algorithm the DFT with sequence of length N will be divided into three components. The third 
component is also an N/4 point DFT of the odd-numbered points and multiplied by W-k .The main feature of this 
algorithm is that the multip lication coefficients are all in conjugate pairs. The algorithm is suitable for computing FFT 
of sequence of length 2n complex data sequence. In [5] this project the author proposes a split radix FFT algorithm for 
DFTs of length pm DFT where p>2.It is shown that whenever there exists an algorithm for the length p2 DFT that is 
more efficient than the radix-p algorithm then the radix-p/p2 algorithm will outperform both radix-p and radix p2.Then 
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we apply the general method to derive an efficient radix 3/9 algorithm for length 3m DFTs. The performance of this 
algorithm is better than radix-3 algorithm. 

III. THE PROPOSED RADIX 3/6 ALGORITHM 
Let us recall the definition of DFT:
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                                                          eq.(1) 

Where wN=e-j2π/N ,j=-1 , the length N of sequence x(n) is assumed as an integer, which is divisibly by six. For lengths 
N of DFT, powers-of-six would be best for the proposed algorithm. Obviously, the DFT can be divided into three 
length N/3 sub-DFTs. In order to derive a best possible algorithm, we continue to decompose the three sub-DFTs. Due 
to no scaling factor in front of it, the first sub-DFT should be let as it is and directly go into the recursive decomposition 
of the next stage. The other two sub DFTs are divided into four sub-DFTs of length-N/6 .  

Actually, if the length of a DFT can be divided by 6, the DFT can be decomposed by the algorithm. The generalized 
length- N can be assumed as N=2rx3m, where r≥m-1. The decomposition of a DFT of size N=2rx3m is denoted by,          
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Where the four length- N/6 sub DFTs are reordered. To simplify the description, (1) can be expressed by, 
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In (3), 
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the similar way,
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kw can be handled with in pairs. The direct implementation performs many unnecessary 

operations, computations of
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 turn out to share many calculations each other. 

In particular, if we add to, the size-N/6 to k DFT are not changed (because they are periodic in k), while the size-N/3 

DFT is unchanged if we add to 2N/6 to k. So, the only things that changes are the,    terms. In 
order to reduce the number of the operations, the following six identities are necessary, 
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A complete output set  can be obtained if we let range from 0 to N/6 -1in the above six equations. We now 

summarize the scheme of the proposed radix-3/6 FFT algorithm. The initial input sequence of length- is decomposed 
into five sub-sequences. This process is repeated successively for each of new sub-sequences, until the sizes of all 
subDFTs are indivisible by 6. Figs. 1,2 illustrate the flow graph of 3 and  6point radix 3/6 algorithm (2-points and 4-
points FFT can be performed with SRFFT). In this section, we consider the performance of the proposed algorithm by 
analyzing the computational complexity and comparing it with existing algorithms. Let  and  be, respectively 
the number of multiplications and additions. We assume that a 3-point DFT requires 4 real multiplications and 12 real 
additions (some algorithm assumes that a 3-point DFT is calculated with 2 real multiplication and 12 real additions, 
since one need not multiply ½ and the multiplication by 1/2 can be evaluated with bit shift). 

 
Fig. 1 Flow graph of 3-point FFT 

 

     
Fig. 2 Flow graph of 6-point 3/6 FFT 

 
Fig. 3 Flow graph of 12-point 3/6 FFT 
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IV. PERFORMANCE ANALYSIS 
 
The general butterfly of the proposed algorithm requires 16 real multiplications and 40 real additions. In general 

butterfly we evaluate (4) with 8 real multiplication and 16 real additions. Because =  and 

= .We calculate (14) with 8 real multiplications and 8 real additions because we share real additions with which 
have been undertaken in evaluating (4). We evaluate (6) with only 4 real additions, because 1+u+u*=0. Furthermore, 
we perform (7)–(8) at cost of 12 real additions, because all multiplications and some additions have been calculated in 
(4)–(6). 

There are six special cases. The first special case, when k=0 requires 8 real multiplications and 32 real additions. In 
this case,(4) is evaluated with 8 real additions (one need not multiply 1), (5) is implemented with 4 real multiplications 
and 6 real additions because we use real additions which have been undertaken in evaluating above calculation, (6) can 
be calculated with only 2 real additions, because we need not add the duplicate portion between u and u*. In the same 
way, (4)–(5) can be performed by only 4 real multiplications and 16 real additions. This special butterfly is illustrated 
in Fig. 2. The second special case,when k=2r-2 x 3 m-1, requires the number of operations equals that of the first case. In 
this case, all rotator factors of subDFTs in (1) can be omitted, so it can be evaluated with 8 real additions, (4) can be 
implemented with 4 real multiplications and 6 real additions,(4) can be calculated with only 2 real additions. Similarly, 
(6)–(7) can be performed by only 4 real multiplications and 16 real additions. 

 
The decomposition in the proposed algorithm is conducted recursively until the lengths of all sub DFTs cannot be 

exactly divided by 6. In general, there are only 1 the first special butterfly (if r≥1and m≥1), 1 the second special case 
butterfly (if r≥2and m≥1 ), 1 the third special case butterfly and 1 the fourth special case butterfly (if r≥3and m≥1  ). 
The total number of the fifth and sixth type of butterflies is 2r-1 -4. In additions, there are 2r-1  (3m-1- 1)general butterfly. 
Thus, the arithmetic complexity of the proposed algorithm can be given as follows, 
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Equation (8) and (9) gives the number of multiplications and additions required by the proposed radix 3/6 algorithm. 
It is seen that the complexity of this algorithm is less than that required by other algorithms. The third special case is 
when k=2r-3x3m . This butterfly requires 12 real multiplications and 36 real additions. In this case, (13) requires extra 4 
real multiplication and 4 real additions over the first case. The computations of the rest equations are similar with that 
of the second case.The fifth special case is when k mod 3m and k mod 2r-3≠0. This butterfly requires 16 real 
multiplications and 36 real additions. In this case, (13) requires extra 8 real multiplication and 4 real additions over the 
first case. The sixth special case is when ,k mod 3m-1=0,k mod 3m≠0 and k mod 2r-3 . This butterfly requires 16 real 
multiplications and 36 real additions. In this case, (7) requires extra 8 real multiplication and 4 real additions over the 
second case. 
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V. SYSTEM IMPLEMENTATION 
 

 Implementation Of 3/6 SRFFT Algorithm in VLSI Technology  use the Spartan 3E.It provides a powerful and 
highly advanced self-contained development platform for designs targeting the Spartan 3E FPGA from Xilinx. It 
features a 500K gate Spartan 3E FPGA with a 32 bit RISC processor and DDR interfaces. The board also features a 
Xilinx Platform Flash, USB and JTAG parallel programming interfaces with numerous FPGA configuration options via 
the onboard Intel StrataFlash and ST Microelectronics Serial Flash. The board is fully compatible with all versions of 
the Xilinx ISE tools including the free Web Pack. The board ships with a power supply and USB cable for 
programming so designs can be implemented immediately with no hidden costs. The Spartan 3E Starter board is also 
compatible with the Micro Blaze Embedded Development Kit (EDK) and Pico Blaze from Xilinx.  Implementing the 
12  point  3/6 SRFFT algorithm  in     Xilinx FPGA  and check the corresponding output in the 2 No’s of   20x4 LCD 
display and checking the corresponding algorithm  over area consumption  in FPGA. Implementation of 3/6 SRFFT 
algorithm reduce the  area consumption and use less number of LUT. 

 
Xilink Spartan -3E FPGA Board: The Xilinx Spartan 3E FPGA board is a robust board containing many features. A list 
of key features and their location on the board is listed below, and all of these features are explained in great detail in 
the manual provided with the FPGA. 

 9-pin RS-232 Serial Port, JTAG port for low-cost download cable 
 1Mbit Xilinx XCF01S Platform Flash, in-system programmable configuration PROM, 9-pin RS-232 Serial 

Port, JTAG port for low-cost download cable 
 Power-on indicator LED 
 AC power adapter input for included international unregulated 9Vac power supply 
 Power-on indicator LED, On-board 3.3V , 2.5V , and 1.2V regulators 

VI. HARDWARE RESULT 
 
The output of the project is shown with FPGA kit and with the help of 20*4 the output is displayed in the binary 

where in real and imaginary terms the execution can be done in the performance of the input data’s given in the 
programs. 

 

 

Fig. 5 Output FPGA kit display 

LCD display output 



           
          
                    ISSN(Online)  : 2320-9801 
            ISSN (Print)  :  2320-9798                                                                                                                         

International Journal of Innovative Research in Computer 
and Communication Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 2, Issue 11, November 2014       
 

Copyright to IJIRCCE                                                                         www.ijircce.com                                                               7014  

     

The display is the LCD display of 20*4, where in the binary data. 12 point output is implemented with three 
conditions.  

1. When both input are low(S0=S1=0), LCD display the first four point  output(A,B,C,D) 
2. When S0 = 0 and S1=1, LCD display the next four point output(E,F,G,H). 
3. When S0 = 1 and S1=1, LCD display the next four point output(I,J,K,L). 

 
Fig. 6  LCD Display Output 

VII. SIMULATION OUTPUT 
 
The 12 point DFT sequence has been implemented in VLSI and simulated using modelsim based on radix 3/6 FFT 

algorithm.  

 

Fig 7 Simulation screenshot 1 

The output is checked using the 12 point radix 3/6 flow graph theoretically and it matches with the simulated results. 
Fig. 7  shows the simulation results of 12 point DFT sequence. Table I and Table II shows the device utilization 
summary of 12 point DFT sequence in Xilinx XSE. Simulating the 12 point SRFFT with twelve point input(include 
both real and imaginary value). 

Area Consumptions 
The Area consumed in the radix 3/6 FFT Algorithm are reduced in number of slices and the number of flip flops and 

number of 4 input LUTs and number of bonded IOBs and number of GCLKs are performed in the area consumed are 
very less and the area are configured target device are performed in this algorithm. 
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TABLE I 
DEVICE UTILIZATION OF NORMAL FFT 

 
TABLE III 

DEVICE UTILIZATION OF SRFFT 

 
 

VIII. CONCLUSION AND FUTURE WORK 

The implementation of radix 3/6 FFT algorithm is new type of algorithm where as the cooley tukey algorithm is the 
oldest algorithm and it takes more delay in transferring the data. Here we can able to transfer the data in very high 
speed while compared to the performance of the Digital signal processing method. The area consumed in this FPGA is 
very less compared to the cooley turkey algorithm method. The splices are very less consumed and the data are stored 
in the PROM memory and therefore the data cannot reduce the memory storage and it saves the output till the next data 
are stored in the processor data functions. There are two modes of testing the data in binary form one in the form of 
modelsim software and other with the FPGA Xilinx Spartan 3E kit. The inputs are given in the program and the outputs 
are checked in the LCD displays. Thus the output is performed for reducing time delay and area consumption and 
logical verification.  

Scope For Future Work 
The implementation of radix 3/6 FFT algorithm is new type of algorithm where as the cooley tukey algorithm is the 

oldest algorithm and it takes more delay in transferring the data. For further representation for this algorithm we can 
able to implement in ASIC as a hardware chip for direct data. 
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