

ISSN (Online) : 2319 - 8753

 ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

Volume 3, Special Issue 3, March 2014

2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st& 22nd March Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2117

Fused Data Structure for Tolerating Faults in

Distributed System

Abstract-In Distributed systems, servers are prone to

crash faults in which the data structures (queue, stack, etc)

may crash, leading to a total loss in state. Hence it is

necessary to tolerate crash faults in distributed

system.Replication is the prevalent solution to tolerate

crash faults .In replication, entire copy of the original data

is taken and stored. Every update to original data reflects

changes in the replicated data. Replication is used to

ensure consistency, improve reliability, fault-tolerance

and accessibility.To tolerate f crash faults among n

distinct data structures, replication requires f replicas of

each data structure, resulting in nf additional

backups.Maintaining nf additional backups for n distinct

data structures requires more space. In this project, fused

data structure is used for backups which can tolerate f

crash faults using just f additional fused backups.

Keywords: Distributed systems, fault tolerance, data

structures.

I.INTRODUCTION

n distributed systems, servers maintain large instances of

data structures such as linked lists, queues, and hash

tables for handling list of pending request from theclients.

These servers are prone to crash faults, leading to a total

loss in state. Active replication [6],[7] is the mostly

preferred solution. To tolerate f crash faults among n

given data structures, replication maintains f + 1 replicas

of each data structure, resulting in a total of nf backups.

For example, consider a set of lock servers that maintain

and coordinate the use of locks. Such a server maintains a

list of pending requests in the form of a queue. To tolerate

four crash faults among, say six independent lock servers

each hosting a queue, replication requires four replicas of

each queue, resulting in a total of 24 backup queues. For

large values of n, this is expensive in terms of the space

required by the backups as well as power and other

resources to maintain the backup processes.Space

efficient can be achieved by using Coding theory [4],[9].

Fig. 1.1: Distributed System Architecture

I

Backup 2

Client 1

Client 2

Client n

NETWORK

S

E

R

V

E

R

Primary copy P2

Primary copy P1

Backup 1

Backup 2

Backup 1 S

E

R

V

E

R

Jeva Kumar M, Golda Jeyasheeli P

PG Scholar, Dept of Computer Science Engineering, Mepco Schlenk, Engineering College, Sivakasi, India.

Assistant Professor, Dept of Computer Science Engineering, Mepco Schlenk, Engineering College, Sivakasi,

India.

Fused Data Structure for Tolerating Faults in Distributed System

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2118

Fusion is a technique which achieves space

efficiency by tolerating f crash faults with f fused backups

[2],[3]. In fusion, the backup copies are not identical to

the given data. Fused stack is maintained at the backups.

The data in the fused stack are in the form of fused state

performed by an operation either addition or XOR. As a

result space efficient is achieved and also crash faults can

be tolerated with minimum number of backups than

replication. Hence fused backups are space-efficient, at

the mean while they cause very little overhead for normal

operation [1],[7],[8].

II. SYSTEM DESIGN

 The system consists of independent servers

hosting data structures. Let n denote given data structures,

alsoreferred as primaries P1 ...Pn. The backup data

structures that are generated based on the idea of fusing

the primary data are referred as fused backups or fused

data structures and it is denoted as F1 ...Ft. The operator

used to combine primary data is called the fusion

operator. The operator may be XOR or simple sum. The

number of fused backups, t, depends on the fusion

operator and the number of faults that need to be

tolerated. Fused backup for binary search tree is shown in

Fig.2.1. Here P1 and P2 are the primaries, F1 and F2 are the

fused backups and the fusion operator is sum. Here binary

search tree is used as primary data structure. Auxiliary

nodes are maintained in list.

III. IMPLEMENTATION

A. Insertion

 When key-value pair is sent to primary Pifor

which the key is not already present in Pi, then a new

node containing this key-value pair is created and inserted

it into the primary binary search tree Pi. A pointer to this

node is added at the end of the aux list (auxList). The

primary Pi sends the key-value pair and the old value (if

key already exist) to all fused backups. Each fused backup

maintains a stack (data Stack) that contains the primary

elements in the coded form. On receiving values from Pi,

if the key is not already present, the backup insert the

value at tos[i]. Else if key already present then backup

erase the old value and insert the new value. To maintain

order information, the backup inserts a pointer to the

newly updated fused node, which points to the

corresponding key in the index structure (indexList[i]).

Fig. 3.1 shows the state of P1 and F1 after the insert of (3,

a1*).

At F1, the value of the third node is updated to

(a1* + b3) and a pointer to this node is inserted at

indexList[1]. The identical operation is performed at F2,

with the only difference is that the third fused node is

updated to (a1* - b3). It is to be noted that the aux list at

P1 specifies the exact order of elements maintained at the

backup stack (a1 -> a
2
 -> a1*) and indexList[1] at the

fused backup specifies the order of elements maintained

at P1 (a1 -> a1* -> a2).

Fig.2.1: Two Fused Backups for toleratingtwo crash faults (Binary Search Tree)

B. Deletion

 When a key-value pair is deleted from the

primary, corresponding node in the auxiliary list that

contains a pointer to this key-value pair is deleted and

final auxiliary node is shifted to this position. Hence, the

primary knows exactly which value to send with every

delete.The node associated with the given key is deleted

from the primary and its value that is need to be sent to all

fused backups is obtained. Along with this obtained key-

value pair, the value pointed by the tail node of the aux

list is also sent to the fused backups. This corresponds to

the top-most element of Pi at the backup stack and hence

helpful for the shift operation that will be performed at the

backup. After sending these values, the primary shifts the

final node of the aux list to the position of the aux node

pointing to the deleted key-value pair, to mimic the shift

of the final element at the backup.

At the backup, using the key sent by the primary Pi,

corresponding fused node is obtained that contains the

element of Pi associated with the key. The value of the

Primary P2

1, b1

4, b2 6, b3

Primary P1

2, a1

aux List

Key, Value

5, a2

a1 + b1

b3

a2 + b2

index List[1] index List[2]

tos[1]

tos[2]

Fused Backup F1 Fused Backup F2

a1 - b1

- b3

a2 - b2

Fused Data Structure for Tolerating Faults in Distributed System

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2119

node is updated with the top-most element (sent by the

primary) to simulate the shift. The pointers of indexList[i]

are updated to reflect this shift. Fig. 3.2 shows the state of

P1 and F1 after the delete of b1. If the size of the primary

or fused nodes is in the order of megabytes, the size of the

index structures or auxiliary structures is just in the order

of bytes (next pointers). So the space overhead of

maintaining these auxiliary/index structures is negligible.

C. Correcting Crash Faults

 To correct crash faults, the client needs to

acquire the state of all the available data structures, both

primaries and backups. When crash fault occurs, it is

impossible to retrieve data from the crashed data

structure. As a result there is a need to retrieve it from

fused backup. Since fused node contains data in fused

state, there is a need to decode the fused node in order to

obtain the original data. The decoding method depends

upon the erasure code used.

 Let us assume two crash fault had occurred, at

both primaries P1 and P2. In order to retrieve the contents

of both primaries following operation is performed.

Obtain values from both fused backups F1 and F2. i.e (ai +

bj) and (ai - bj)

To retrieve values of P1 perform [(ai + bj) + (ai - bj)] / 2

To retrieve values of P2 perform [(ai + bj) - (ai + bj)]/2

Fig. 3.1: INSERTION (Binary Search Tree)

IV. PERFORMANCE EVALUATION

 In this section, the main differences between

replication and fusion were summarized. Throughout this

section, assume n primary data structures, containing at

most O(m) nodes of size O(s) each. Each primary can be

updated in O(x) time. Assume that the system can correct

f crash faults and t is the actual number of crash faults that

occured. Table 4.1 shows performance analysis of both

replication and fusion.

After delete(1) at X2

After insert(3, a1*) at P1

a1 + b1

a1* + b3

a2 + b2

Fused Backup F1

2, a1

3, a1*
5, a2

Primary P1

6, b3

4, b2

 Primary P2

a1 + b3

a1*

 a2 + b2

 Fused Backup F1

Fig. 3.2: DELETION (Binary Search Tree)

Fused Data Structure for Tolerating Faults in Distributed System

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2120

TABLE 4.1: Performance Evaluation

a. Number Of Backups

To correct f crash faults among n primaries,

fusion requires f backup data structures as compared to

the nf backup data structures required by replication. Let

number of primary data structure be 10. Then the graph

(Fig.4.1) compares replication and fusion in terms of

number of backups required.

0

20

40

60

80

100

120

0 5 10 15

Fusion

Replication

Fig.4.1: Number of backups

b. Backup Space

 For crash faults, the total space occupied by the

fused backups is msf (f backups of size ms each) as

compared to nmsf for replication (nf backups of size ms

each). Let m = 100 nodes, size of data s=20 bytes and

n=10 distinct primary data structure. Then following

graph (Fig.4.2) compare both replication and fusion in

terms of backup space.

0

50000

100000

150000

200000

250000

0 5 10 15

Fusion

Replication

Fig.4.2: Backup Space

c. Recovery Messages

 This refers to the number of messages that need

to be exchanged once a fault has been detected. When t

crash faults are detected, in fusion, n + f - t messages of

size O(ms) each are exchanged. In replication only t

messages of size O(ms) each is required. Let n=10 and

f=10, following graph (Fig. 4.3) compares replication and

fusion in terms of number of recovery messages needed.

Fig. 4.3: Number of recovery messages

d. Fault Free Operation

 The fused backups in this system can be updated

with the same time complexity as that for updating the

corresponding primary, i.e., O(x).

e. Fault Free Operation Messages

 The number of messages that the primary needs

to send to the backups for any update is known as fault

free operation messages. In fusion, for crash faults, every

update sent to the primary needs to be sent to f backups.

The size of each message is 2s since there is a need to

send the new value and old value to the backups. For

deletes, the size of each message is 2s since there is a

need to send the old value and the value of the top-of-

stack element. Hence, for crash faults, in fusion, for any

update, f messages of size 2s need to be exchanged. For

replication, in inserts, only the new value needs to be sent

to the f copies of the primary and for deletes, only the key

to be deleted needs to be sent. Hence, for crash faults in

replication, for any update f messages of size at most s

need to be exchanged.

 Replication Fusion

Number of primary

copies „n‟

2 2

Number of crash fault

tolerance „f‟

2 2

Number of Backups

required

4 2

Size in terms of

nodes „m‟ (each

primaries)

100 100

Size of data „s‟ in

each node

20 bytes 20 bytes

Backup Space nmsf=8000

bytes

msf=4000

bytes

Number crashes

consider as occurred

„t‟

2 2

Recovery Time O(mst)=O(

4000)

O(ms(t^2)n

)=O(16000

)

Normal (fault free)

Operation Messages

2 msgs, 20

bytes each

2 msgs, 40

bytes each

Recovery Messages

„ms‟ size each

t msgs (2

msg, 2000

bytes each)

n+f-tmsgs

(2 msg,

2000 bytes

each)

Number

of

backups

 Number of Crash fault tolerant

Backup

space

(bytes)

 Number of Crash fault occurred

Number

of

recovery

messages

 Number of Crash fault tolerant

Fused Data Structure for Tolerating Faults in Distributed System

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2121

f. Recovery Time

 Recovery time is measured as the time taken to

recover the state of the crashed data structures after the

client obtains the state of the relevant data structures. In

the case of fusion, to recover from t crash faults, there is a

need to decode the backups with total time complexity

O(mst
2
n). For replication, this is only O(mst). Thus,

replication perform much better than fusion in terms of

the time taken for recovery.

g. Update Time

 Fusion has more update overhead as compared to

replication. In fusion, the update time at a backup

includes the time taken to locate the node to update plus

the time taken to update the node‟s code value. The code

update time was low and almost all the update time was

spent in locating the node. Hence, optimizing the update

algorithm can reduce the total update time.

V. CONCLUSION

 Given n primaries, a fusion-based technique is

presented for crash fault tolerance that guarantees O(n)

savings in space as compared to replication with almost

no overhead during fault free operation. Generic design of

fused backups and their implementation for the data

structures in the c++ that includes Linked List and Binary

Search tree were provided. The main feature of this work

is compared with replication. The performance result

evaluation confirms that fusion is extremely space

efficient while replication is efficient in terms of recovery

and the size of the messages that need to be sent to the

backups. Using the concepts presented in this project,

there is a possibility for an alternate design using a

combination of replication and fusion-based techniques.

Thus here by conclude that fusion achieves significant

savings in space, power, and other resources.

VI. FUTURE WORK

 This work can be extended to more number of

data structure other than linked list and binary search

tree.Update time in fused backup can be reduced by

optimizing the update algorithm.Recovery time can be

reduced by using efficient recovery algorithm.

REFERENCES

[1]BharathBalasubramanian and Vijay K. GargG, “Fault Tolerance in

Distributed Systems Using Fused Data Structures,” IEEE Transactions

On Parallel And Distributed Systems, Vol. 24, No. 4, pg no. 701-715,

April 2013.
[2]Balasubramanian B and V.K. Garg, “Fused Data Structure Library

(Implemented in Java 1.6),” Parallel and Distributed Systems

Laboratory, http://maple.ece.utexas.edu, 2010.
[3]Balasubramanian B and V.K. Garg, “Fused Data Structures for

Handling Multiple Faults in Distributed Systems,” Proc. Int‟l Conf.

Distributed Computing Systems (ICDCS ‟11), pp. 677-688, June 201

[4]Berlekamp E.R, Algebraic Coding Theory. McGraw-Hill, 1968.

[5]Garg V.K and V. Ogale, “Fusible Data Structures for Fault

Tolerance,” Proc. 27th Int‟l Conf. Distributed Computing Systems
(ICDCS ‟07), June 2007.

[6]HengmingZou, FarnamJahanian, “A Real-Time Primary-Backup

Replication Service ”, IEEE Transactions On Parallel And Distributed
Systems, Vol. 10, No. 6, Pg No. 533-548, June 1999.

[7] Maria Chtepen, Filip H.A. Claeys, Bart hoedt, Filip De Turck, Piet

Demeester , Peter A. Vanrolleghem , “Adaptive Task Checkpointing and

Replication: Toward Efficient Fault-Tolerant Grids ”, IEEE Transactions

On Parallel And Distributed Systems, Vol. 20, No. 2, Pg No. 180-190,

February 2009 .
[8] Ogale V, B. Balasubramanian, and V.K. Garg, “A Fusion-Based

Approach for Tolerating Faults in Finite State Machines,” Proc. IEEE

Int‟l Symp. Parallel and Distributed Processing (IPDPS ‟09), pp. 1-11,
2009.

[9] W.W. Peterson and E.J. Weldon, Error-Correcting Codes - Revised,

second ed. The MIT Press, Mar. 1972.

