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ABSTRACT 

 

NLCA has grown as potential classifier for addressing major 

problems in bioinformatics. Lot of bioinformatics problems like predicting the 

protein coding region, finding the promoter region, prediction of the structure 

of protein and many other problems in bioinformatics can be addressed 

through Cellular Automata. Even though there are some prediction 

techniques addressing these problems, the approximate accuracy level is 

very less. An automated procedure was proposed with HACA (Hybrid Attractor 

Cellular Automata) which can address all these problems. Extensive 

experiments are conducted for reporting the accuracy of the proposed tool. 

The average accuracy of HACA when tested with ENCODE, BG570, HMR195, 

Fickett and Tongue, ASP67 datasets is 78%.  

 

Abbreviations: Non Linear Cellular Automata(NLCA) ,Cellular Automata (CA), 

Hybrid Attractor Cellular Automata (HACA), Genetic Algorithm (GA) 

 

 

INTRODUCTION 

 

 Many interesting problems in bioinformatics that can be addressed by Cellular Automata Classifier. Predicting 

the structure of protein with the topology of the chain, finding the protein coding region and finding the promoter region 

can be done very easily with NLCA. The tree dimensional arrangement of amino acid sequences can be described by 

tertiary structure. They can be predicted independent of each other. Functionality of the protein can be affected by the 

tertiary structure, topology and the tertiary structure. Structure aids in the identification of membrane proteins, location 

of binding sites and identification of homologous proteins [9,10,11] to list a few of the benefits, and thus highlighting the 

importance, of knowing this level of structure  This is the reason why considerable efforts have been devoted in 

predicting the  structure only. Knowing the structure of a protein is extremely important and can also greatly enhance 

the accuracy of tertiary structure prediction. Furthermore, proteins   can be classified according to their structural 

elements, specifically their alpha helix and beta sheet content.    

 

 Proteins are chains of amino acids joined together by peptide bonds. Many conformations of this chain are 

possible due to the rotation of the chain about each Cα atom [12,13,14,15]. It is these conformational changes that are 

responsible for differences in the three dimensional structure of proteins. Each amino acid in the chain is polar, i.e. it 

has separated positive and negative charged regions with a free C=O group, which can act as hydrogen bond acceptor 

and an NH group, which can act as hydrogen bond donor. These groups can therefore interact in the protein structure. 

The 20 amino acids can be classified according to the chemistry of the side chain which also plays an important 

structural role. Glycine takes on a special position, as it has the smallest side chain, only one Hydrogen atom, and 

therefore can increase the local flexibility in the protein structure.  
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Related Works 

 

Gish et al has proposed database similarity search for identifying protein coding regions, Salzburg et al has 

proposed a decision tree algorithm to solve the problem. Very less work was done to find the promoter regions in DNA 

sequences. The Objective of structure prediction is to identify whether the amino acid residue of protein is in helix, 

strand or any other shape. In 1960 as a   initiative step [25,26,27] of structure prediction the probability of respective 

structure element is calculated for each amino acid by taking single amino acid properties consideration [1,3,6]. The third 

generation technique includes machine learning, knowledge about proteins, several algorithms which gives 70% 

accuracy. Neural Networks [10,11] are also useful in implementing structure prediction programs like PHD, SAM-T99. 

 

Design of HACA Based Pattern Classifier 

  

This model is built describing a predefined set of data classes. A sample set from the database, each member 

belonging to one of the predefined classes, is used to train the model. The training phase is termed as supervised 

learning of the classifier. Each member may have Hybrid features. The classifier is trained based on a specific metric. 

Subsequent to training, the model performs the task of prediction [28,29,30] in the testing phase. Prediction of the class of 

an input sample is done based on some metric, typically distance metric. 

 

The evolution process is directed by the popular Genetic Algorithm (GA) [16,17] with the underlying philosophy of 

survival of the fittest gene. This GA framework can be adopted to arrive at the desired NLCA rule structure appropriate 

to model a physical system. The goals of GA formulation are to enhance the understanding of the ways NLCA performs 

computations and to learn how NLCA may be evolved to perform a specific computational task and to understand how 

evolution creates complex global behavior in a locally interconnected system of simple cells. 

 

A NLCA consists of a number of cells organized in the form of a lattice. It evolves in discrete space and time. 

The next state of a cell depends on its own state and the states of its neighboring cells. In a 3-neighborhood 

dependency, the next state qi(t + 1) of a cell is assumed to be dependent [36] only on itself and on its two neighbors (left 

and right), and is denoted as  

 

qi(t + 1) = f (qi−1(t), qi(t), qi+1(t))         (1) 

 

where qi(t ) represents the state of the ith cell at tth instant of time, f is the next state function and referred to as the rule 

of the automata. The decimal equivalent of the next state function, as introduced by Wolfram, is the rule number of the 

NLCA cell. In a 2-state 3-neighborhood NLCA, there are total 223 that is, 256 distinct next state functions .Out of 256 

rules, two rules 85 and 238 are illustrated below: 

 

Rule 85 : qi(t + 1) = qi+1(t)                                               (2) 

 

Rule 238 : qi(t + 1) = qi(t) + qi+1(t)                                   (3) 

 

 An n-bit HACA with k-attractor basins can be viewed as a natural classifier. It classifies a given set of patterns 

into k number of distinct classes, each class containing the set of states in the attractor basin. To enhance the 

classification accuracy of the machine, most of the works have employed HACA Fig 1, to classify patterns into two 

classes (say I and II). The following example illustrates an HACA [31] based two class pattern classifier. 

                                               Figure 1:  Example of HACA with basin 0000 
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Spatial HACA Tree Building 

 

Input        :   The Training set S = {S1, S2, · ·, SN}  

Output     :   HACA Tree. Partition(S,N) 

Step 1      :  Generate a –spatial HACA with N number of attractor basins. 

Step 2      :  Distribute S based on fitness into  N attractor basins (nodes). 

Step 3      :  Evaluate the distribution as per rule  in each attractor basin 

Step 4      :  If S’ of an attractor basin belong to  only one class, then label the attractor basin (leaf node) for that spatial  

       class. 

Step 5      :  For examples (S’) of an attractor basin belong to N’ number of classes, then     Partition (S’, N’). 

Step 6      :  Stop. 

 

A class of non-linear CA, termed as Hybrid Attractor CA (HACA) [32], has been proposed to develop the model. 

Theoretical analysis, reported in this chapter, provides an estimate of the noise accommodating capability of the 

proposed  HACA based associative memory model. Characterization of the basins [18] of attraction of the proposed 

model establishes the sparse network of non-linear CA ( HACA) [33,34] as a powerful pattern recognizer for memorizing 

unbiased patterns. It provides an efficient and cost-effective alternative to the dense network of neural net for pattern 

recognition. Detailed analysis of the  HACA rule space establishes the fact that the rule subspace of the pattern 

recognizing/classifying NLCA lies at the edge of chaos. Such a NLCA, as projected in [20], is capable of executing 

complex computation. The analysis and experimental results reported in the current and next chapters confirm this 

viewpoint. A  HACA employing the NLCA rules at the edge of chaos is capable of performing complex computation 

associated with pattern recognition. 

 

The entropy and mutual information of the NLCA in successive generations of GA are reported in for four 

different NLCA size (n= 10, 15, 20, 30). For each of the cases, the values of entropy and mutual information reach their 

steady state once the AIS FHACA for a given pattern set gets evolved. For understanding the motion, the initial 

population (IP) is randomly generated. All these figures points to the fact that as the CA evolve towards the desired goal 

of maximum pattern recognizing capability, the entropy values fluctuate in the intermediate generations, but saturate to 

a particular value (close to the critical value 0·84 [24]) when fit rule is obtained. Simultaneously, the values of mutual 

information fluctuate at the intermediate points prior to reaching maximum value that remains stable in subsequent 

generations. All these figures indicate that the CA move from chaotic region to the edge of chaos to perform complex 

computation associated with pattern recognition. 

 

 Crossover operator randomly chooses a locus and exchanges the subsequences before and after that locus 

between two chromosomes to create two offspring. The crossover operator helps to explore the search space by virtue 

of providing means to generate new solutions out of the current population. The probability of selecting a pair of 

chromosomes to be employed for crossover depends upon the fitness of chromosomes. Majority of chromosomes for 

the next generations are produced through the crossover process. We have experimented with two different techniques 

of crossover to speed up the rate of convergence. However, there is no major difference in performance between the 

two schemes. 

 
Figure 1: Score Analysis 
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Mutation operator randomly flips some of the bits in a chromosome. The mutation, applied to perturb one or 

more solutions, ensure that the search space explored is not closed under crossover. The probability of mutation on a 

given chromosome is kept very low. In our problem, 10% of the population of NP is generated out of mutations of the 

elite rules. Here also we have experimented with two standard techniques of mutation. 

 

 

EXPERIMENTAL STEP 

 

 Using Bp, create an input sequences Ib (corresponding to the base NLCA protein) by replacing each amino acid 

in the primary structure with its hydrophobia city value. The output sequences Ob is created by replacing the  

structural elements [19, 21]  in Bs with the values, 200, 600, 800 for helix C, strand and coil respectively 

 

 Solve the system identification problem, by performing NLCA de convolution with the output sequences Ob and 

the input sequence Ib to obtain the NLCA response, or the sought after running the algorithm. 

 

 Transform the amino acid sequence of Tp into a discrete time sequences It, and convolve with F; thereby 

producing the predicted  structure (Ot = It*F) of the target NLCA protein Fig 3, table 1,2. 

 

 The result of this calculation Ot is a vector of numerical values. For values between 0 and 200, a helix C is 

predicted, and between 600 and 800, a strand is predicted by CA. All other values will be predicted as a coil by 

HACA. This produces mapping for the required target  structure Ts of the target CA protein T 

 

EXPERIMENTAL RESULTS 

 

In the experiments conducted, the base proteins are assigned the values 300,700,900 for helix C, strand and 

coil respectively. We have found an structure numbering scheme that is build on Boolean characters of CA which 

predicts the coils, stands and helices separately .The HACA based prediction procedure [22,23,24] as described in the 

previous section is then executed, and each occurrence of each sequences in the resulting output, is predicted . The 

query sequence analyzer was designed and identification of the green terminals of the protein is simulated. The 

analysis of the sequence and the place of joining of the proteins are also pointed out.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Prediction Accuracy of protein coding reigns and promoter regions 
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Figure 3: Amino Acid Input 

 

Target : 1PFC Prediction Accuracy Target: 1PP2 Prediction Accuracy Target: 1QL8 Prediction Accuracy 

Exp 1 65% Exp 5 85% Exp 9 85% 

Exp 2 65% Exp 6 90% Exp 10 90% 

Exp 3 69% Exp 7 83% Exp 11 82% 

Exp 4 71% Exp 8 87% Exp 12 91% 

 

Table 1:  Prediction Accuracy of protein coding reigns and promoter regions 

 

Prediction Method Prediction Accuracy for 1PFC Prediction Accuracy for 1PP2 Prediction Accuracy for 

1QL8 

DSP 92% 70% 96% 

PHD 70% 68% 84% 

SAM-T99 68% 77% 87% 

SS Pro 70% 73% 81% 

HACA 90% 85% 97% 

 

Table 2:  Prediction Accuracy for protein structure prediction 

 

CONCLUSION 

 

 We have proposed a cellular automata classifier which can address major issues in bioinformatics. Extensive 

experiments are conducted for reporting the accuracy of the proposed tool. The average accuracy of HACA when tested 

with ENCODE, BG570, HMR195, Fickett and Tongue, ASP67 datasets is 78%. This work can be extended to achieve 

good classification accuracy for other problems in bioinformatics like genome annotation, sequence analysis etc.  
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