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Abstract:  The influence and impact of digital images on modern society is tremendous and is considered as a critical component in variety of application areas 

including pattern recognition, computer vision, industrial automation and healthcare industries. Medical imaging is concerned with the development of the imaging 

devices that help to identify different aspects of the tissue and organs based on various properties and reveal new properties of the tissue and internal structure. 

Examples of such devices / equipments include x-ray devices, CT / MRI scanners, electron microscope, etc.  All these devices introduce, an unwanted signal, called 

noise. This paper considers a special kind of noise introduced by ultra sonographic devices is called 'speckle'. Speckle appears as interference of back-scattered wave 

from many microscopic diffused reflection. They spread through internal organs and make it more difficult for the observer to discriminate fine detail of the images in 

diagnostic examinations. In this paper, hybrid models are designed for speckle removal by combining anisotropic diffusion based on 4th order PDE with the three 

conventional linear filters, kaun, lee and frost. Experiments were conducted with various ultrasound images. From the results, it was found that all the three hybrid 

methods performed denoising operation in a superior fashion and produce images that are of good visual quality. 

Keywords: Denoising, ultrasonic images, hybrid models, kaun, lee, frost   

INTRODUCTION 

Various medical imaging devices like x-ray, CT / MRI scanners 

and electron microscope produce high-resolution images, which 

play a vital role in disease diagnosis. Out of these devices, 

medical sonography (ultrasonography) is an ultrasound-based 

diagnostic medical imaging technique used to visualize muscles, 

tendons, and many internal organs, to capture their size, structure 

and any pathological lesions with real time tomographic images. 

Ultrasound has been used by sonographers to image the human 

body for at least 50 years and has become one of the most widely 

used diagnostic tools in modern medicine. The technology is 

relatively inexpensive and portable when compared with other 

techniques such as magnetic resonance imaging (MRI) and 

computed tomography (CT). Ultrasound is also used to visualize 

fetuses during routine and emergency prenatal care. Such 

diagnostic applications used during pregnancy are referred to as 

obstetric sonography. Medical sonography is used in the study of 

many different systems like cardiology, gastroenterology, 

gynecology, neurology, obstetrics, urology and cardiovascular 

systems (Tso and Mather, 2009). Images produced by these 

devices can be displayed, captured, and broadcast through a 

computer using a frame grabber to capture and digitize the 

analog video signal. The captured signal can then be post-

processed on the computer itself. Ultrasonogrpahy is widely used 

by practitioners as they have no long-term side effects and has 

the added advantage that it is non-intrusive to the patients 

(Hangiandreou, 2003). The device provides live images, where 

the operator can select the most useful section for diagnosing 

thus facilitating quick diagnoses (Sudha et al., 2009). However, 

imperfect acquisition instruments, transmission errors often 

distort the visual signals obtained. These distortions in ultrasound 

images are referred as ‘Speckle Noise’ and are considered as 

undesirable feature that often lead to incorrect diagnosis.   

Speckle is a complex phenomenon and it significantly degrades 

image quality. Speckle appears interference of back-scattered 

wave from many microscopic diffused reflection which passing 

through internal organs and makes it more difficult for the 

observer to discriminate fine detail of the images in diagnostic 

examinations. Thus, it is important that to remove or reduce this 

noise to the maximum extent before using them (Raman and 

Himanshu, 2010). The goal of any speckle removal algorithm 

should be to enhance the corrupted images by maintaining the 

quality of the image.  

In this paper, the applicability of anisotropic diffusion filter, also 

called Perona–Malik diffusion, to speckle denoise ultrasound 

images is consider. Anisotropic diffusion filter is a frequently 

used filtering technique in digital images (Fu et al., 2006). 

Anisotropic diffusion is a technique aiming at reducing image 

noise without removing significant parts of the image content, 

typically edges, lines or other details that are important for the 

interpretation of the image (Perona and Malik 1987; 1990; 

Sapiro, 2001). In spite of its popularity, it faces the following 

problems.   

1. they cause blocky effects in images  

2. they destroy structural and spatial neighbourhood 

information (Pitas and Venetsanopoulos, 1990) and  

3. they are slow in reaching a convergence stage.  

Attempts made to solve these disadvantages include the 

development of hybrid varieties (Ling and Bovik, 2002; Rajan 

and Kaimal, 2006a; 2006b). Eventhough, these hybrid models 

produce excellent results when compared with stand-alone 
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anisotropic diffusion and other filtering techniques, they come 

with the defect of removing finer details of an image like edges, 

sharp corners, thin lines (Hamza et al., 1999).  

Rajan et al. (2009) developed a hybrid method to remove noise 

from molecular images. The method combined anisotropic 

diffusion filter with 2D PDE (Partial Differential Equation) with 

a relaxed median filter (Wang and Zhang, 1999). This method 

was successful in removing molecular noise and had less 

blocking and artifacts in the denoised image. However, when 

applied to speckle noise removal, the noises were not fully 

removed and it had the serious flaw of slow convergence. The 

slow convergence is because of 2D PDE used and the failure in 

noise removal might be because of the relaxed median filter. The 

relaxed median filter, eventhough is very popular in reducing 

other types of noises, is not suitable for speckle noise. 

Motivated by the work of Rajan et al. (2009), the present 

research work proposes to combine anisotropic diffusion filter 

with conventional speckle noise denoising filters, namely, Kaun, 

Lee and Frost. Normally, the anisotropic functions are based on 

2nd order PDE (Partial Differential Equation) functions. In the 

present research work, a fourth order PDE is used with the 

conventional basic anisotropic model. The combination of 

anisotropic diffusion function with 4th order PDE and 

conventional despeckling filter is proposed to reduce the speckle 

noise from ultrasonic images, which while denoising, preserves 

the edges, avoids staircase artifacts and converges in a fast 

manner.    

The paper is organized as below. Section 1 provided a brief 

overview to the topic under discussion. The second section gives 

an overview to Speckle noise. Section 3 explains the concepts of 

the techniques used in the proposed hybrid models. Section 4 

presents the proposed methodology and the results of 

experiments conducted are presented in Section 5. Section 6 

presents a short conclusion with future research directions. 

SPECKLE NOISE 

Speckle is a random, deterministic, interference pattern in an 

image formed with coherent radiation of a medium containing 

many sub-resolution scatterers. Speckle has a negative impact on 

ultrasound imaging. The presence of speckle noise in images 

shows a reduction of lesion detectability of approximately a 

factor of eight. This radical reduction in contrast resolution is 

responsible for the poorer effective resolution of ultrasound 

compared to x-ray and MRI. Presence of speckle noise prevents 

Automatic Target Recognition (ATR) and texture analysis 

algorithm to perform efficiently and gives the image a grainy 

appearance. Hence, despeckling is considered as a critical pre-

processing step in medical imaging systems. Speckle noise 

follows a gamma distribution and is given as in Equation (1). 
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 and g is the gray level. On an image, speckle 

noise (with variance 0.05) looks as shown in Figure 1a and the 

corresponding gamma distribution is given in Figure 1b. 

 

 

 
(a) Speckle Noise  (b)Gamma Distribution 

 

Figure 1 : Noise and Distribution 

 

Mathematically, a speckle noise can be represented by the 

Equation 2. 

S' = FS     (2) 

where S' (=s1', s2', …) is the speckled image, F (=f1, f2, …) is the 

noise free image and S (=s1, s2, …) is the speckle noise 

introduced. The corrupted pixels are either set to the maximum 

value, which is something like a snow in image or have single 

bits flipped over. These noisy data can be reduced or removed 

using specially designed filters and are discussed in the next 

section. 

ROPOSED HYBRID FILTERS 

This paper proposes a new variant of base model, which replaces 

the median filter with a filter that is more suitable to remove 

speckle noise. The filters considered to replace median filters are 

(i) Kaun filter, (ii) Lee filter and (iii) Frost filter. All the three 

filters selected have been successfully exploited to remove 

speckle noise. The disadvantage of using it directly on ultrasonic 

images is that it produces artifacts as a side effect after removal. 

In order to improve anisotropic diffusion filter, traditional 

speckle noise removal filters and RHM model, anisotropic 

diffusion filter is modified to use a 4th order PDE, followed by 

any one of the three speckle noise removal techniques. Thus, 

three new hybrid models are proposed, as listed below and 

Figure 2 shows the methodology adopted. The techniques and 

algorithms used are explained in this section.  

1. 4th Order PDE based Anisotropic Diffusion Filter + 

Kaun Filter (ADFK Model) 

2. 4th Order PDE based Anisotropic Diffusion Filter + Lee 

Filter (ADFL Model) 

3. 4th Order PDE based Anisotropic Diffusion Filter + 

Frost Filter (ADFF Model) 

 

 

 

 

 

 

 

 

A. Anisotropic diffusion 

In anisotropic diffusion, the main motto is to encourage 

smoothening with in the region in preference to the smoothening 

across the edges. This is achieved by setting the conduction 

4th order PDE 
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coefficient as 1 within the region and as 0 near edges, however, 

the main problem involved in this is the detection of the presence 

and absence of edges. This is done by analyzing the conduction 

coefficient as a function of magnitude of the gradient. A general 

expression (Acton et al., 2003) for anisotropic diffusion can be 

written by Equation (3). 
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∂    (3) 

where, I is the input image, I0 is the initial image and I0=I(x,0). F 

is the diffusion flux and � is a data attachment coefficient. If � = 

0, particular cases of equation are:  

1) The heat diffusion equation F = ∇I which is equivalent to 

Gaussian convolution.  

2) The non linear probability density function (PDF) with   F= 

c (|∇I|) x ∇I. where ∇ is the gradient operator, div is the 

divergence operator, || denotes the magnitude and diffusion 

coefficient c (x) is given by: 
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where, k is the edge magnitude parameter. In this anisotropic 

diffusion method, for finding edges as a step discontinuity, 

gradient magnitude is used.  

If |∇I|>>k, then c (|∇I|) → 0, an all pass filter is used; if | ∇I | << 

k , then, c(|∇I|) → 1, isotropic diffusion is achieved. Discrete 

form of (4) is given by 
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I  is discretely sampled image, s denotes the pixel 

position in a discrete (2-D) grid, and ∇t is the time step, 
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above equations show that the anisotropic diffusion allows the 

smoothening of homogenous regions and prohibits smoothening 

the near edges, thus, preserving the edges. 

B. Speckle Reducing Anisotropic Diffusion (SRAD) 

Anisotropic Diffusion is a nonlinear smoothing filter (Grieg et 

al., 1992). It uses a variable conductance term, to control the 

contrast of the edges that influence the diffusion. This filter has 

the ability to preserve edges, while smoothing the rest of the 

image to reduce noise (Sun and Song, 2007). The anisotropic 

diffusion has been used in several researchers in image 

restoration (Min and Xiangchu, 2007) and image recovery 

(Torkamani-Azar and Tait, 1996). SRAD (Yu and Acton, 2002) 

is an edge-sensitive Partial Differential Equation (PDE) 

anisotropic diffusion approach to reduce speckle noise in images. 

The anisotropic filtering in SRAD simplifies image features to 

improve image segmentation by smoothening the image in 

homogeneous area while preserving and enhances the edges. It 

reduces blocking artifacts by deleting small edges amplified by 

homomorphic filtering. SRAD equation is given by the Equation 

(6). 

 SRAD(U’) = ut+1 = ut + 
4

t∆  div(g(ICOV(u’)) x ∇u’) (6)  

where t is the diffusion time index, ∆t is the time step responsible 

for the convergence rate of the diffusion process (normally in the 

range 0.05 to 0.25), g(.) is the diffusion function and is given by 

Equations (7) and (8). 
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where q’ is the measure of speckle coefficient of variation in a 

homogenous region of the image. The performance of SRAD is 

superior to the traditional anisotropic diffusion filters. However, 

SRAD has the disadvantage that the diffusion time increases with 

the image features and it is already known that when diffusion 

time increases the image quality of the denoised image decreases. 

C. Fourth Order PDEs and Anisotropic Diffusion 

Recently, non-linear fourth order PDES are used effectively in 

the field of noise reduction (Greer and Bertozzi, 2004; Lysaker et 

al., 2003; Wei, 1999). The reason behind this is they are faster in 

denoising and create a richer set of functional behaviour that can 

be exploited during image enhancement. The L2-curvature 

gradient flow method of You and Kaveh (2000) is used and is 

given in Equation (9). 
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where ∇2u is the Laplacian of the image u. Since the Laplacian of 

an image at a pixel is zero if the image is planar in its 

neighborhood, the PDE attempt to remove noise and preserve 

edges by approximating an observed image with a piecewise 

planar image. The desirable diffusion coefficient c(.) should be 

such that Equation (9) diffuses more in smooth areas and less 

around less intensity transitions, so that small variations in image 

intensity such as noise and unwanted texture are smoothed and 

edges are preserved. Another objective for the selection of c(.) is 

to incur backward diffusion around intensity transitions so that 

edges are sharpened and to assure forward diffusion in smooth 

areas for noise removal.  

Several diffusivity functions can be used (Mrazek et al., 2003). 

Some of them are Linear diffusivity, Charbonnier diffusivity, 

Weickert diffusivity, TV diffusivity, BFB diffusivity and Perona-

Malik diffusivity. The present study uses Perona-Malik 

diffusivity as given in Equation (10). 
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The Equation (9) was associated with the following energy 

functional 

�
Ω
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where � is the image support and ∇2 denotes Laplacian operator. 

Since f(|∇2u|) is an increasing function of |∇2u|, its global 

minimum is at |∇2
u|=0. Consequently, the global minimum of 

E(u) occurs when  
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A planar image obviously satisfies (Rajan and Kaimal, 2006a), 

hence is a global minimum of E(u). Planar images are the only 

global minimum of E(u) if f ''(s) ≥ 0 for all s ≥ 0 because the cost 

functional E(u) is convex under this condition (Rajan and 

Kaimal, 2006b). Therefore, the evolution of Equation (9) is a 

process in which the image is smoothed more and more until it 

becomes a planar image. But in the case of second order 

anisotropic diffusion, ƒ”(s) may not be greater than zero for all s, 

which results in a stepping blocking artifact effect in the resultant 

image.   

D. Speckle Filters 

Several researchers have contributed techniques to resolve the 

despeckling problem. The main challenge is that the process of 

denoising is irreversible and therefore must be very careful while 

removing noise regions. Accidental removal of important regions 

should be avoidedAmong the standard filters, Lee Filter, Frost 

Filter (Frost et al., 1982), Median Filter and Kaun Filter (Kaun et 

al., 1985) have been successfully applied to the problem of 

speckle reduction and are discussed in this section.   

Each filter discussed in this section, has a unique reduction 

approach which is applied to a kernel (square-moving window) 

and filtering is based on the statistical relationship that exists 

between the central pixel and its surrounding pixels (Figure 3). 

The typical size of the kernel has to be odd ranging from 3 x 3 to 

33 x 33. The kernel size has to be chosen carefully, as a large 

size will be computationally expensive and important 

information might be lost due to over smoothing. Similarly, 

speckle reduction cannot be applied to a very small kernel. Most 

of the works use a 3 x 3 or 7 x 7 kernel size.  

 
 

Figure 3 : 3 x 3 Kernal 

 

Filtering is based on either local statistical data or on the 

estimation of local noise variance of the kernel. The variance 

thus obtained is then used to determine the amount of 

smoothening needed for each speckle image. The noise variance 

determined from the local filter window is more applicable if the 

intensity of an area is constant or flat while ENL is suitable if 

there are difficulties determining if an area of the image is flat. 

• Lee Filter 

The Lee filter uses the least-squares approach to estimate the true 

signal strength of the center cell in the filter window from the 

measured value in that cell, the local mean brightness of all cells 

in the window, and a gain factor is calculated from the local 

variance and the noise standard deviation. The filter assumes a 

Gaussian (normal) distribution for the noise values, and 

calculates the local noise standard deviation for each filter 

window. The Lee filter calculation produces an output value 

close to the local mean for uniform areas and a value close to the 

original input value in higher contrast regions. Lee filters are 

more affective in uniform areas and can maintain edges and other 

fine detail. The Lee filter has no user-defined parameters. The 

mathematical background of the lee filter is given below. 

The Lee filter is based on the approach where smoothing is 

performed when the variance over an area is low or constant, 

otherwise, that is, if the variance is high (e.g. near edges), 

smoothing will not be performed. The Lee filter assumes that the 

speckle noise is multiplicative and can be approximated by a 

linear model given in Equation (12). 

Img(i,j) = Im + W * (Cp - Im)   (12) 

where Img(i,j) is the color value of the pixel at indices i and j 

after filtering. If there is no smoothing, the filter will output only 

the mean intensity value of the filter window Im. Otherwise, the 

difference between Cp (center pixel) and Im is calculated and 

multiplied with a weighting function W given in Equation (13) 

and then summed with Im. 

W = σ2/(σ2 + ρ2)     (13) 

where σ2 is the variance of the pixels values within the filter 

window given in Equation (3.15), N is the size of the filter 

window and Xj is the pixel value within the filter window at 

indices j. 
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The parameter ρ� is the additive noise variance of the image given 

in Equation (15), M is the size of the image and Yj is the value of 

each pixel in the image. 
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The main disadvantage of Lee filter is that it tends to ignore 

speckle noise in the areas closest to edges and lines. 

• Frost Filter 
The Frost filter is an adaptive radar filter that incorporates the 

local image statistics in the filtering process, assuming a negative 

exponential distribution for the speckle noise. The filter performs 

a weighted average of the cell values in the filter window, with 

the weights for each cell being determined from the local 

statistics to minimize the mean square error of the signal 

estimate. The filter weight for a cell is a negative exponential 

function of the noise standard deviation (calculated locally for 

each filter window) and also decreases with distance from the 

center cell. The center cells are weighted more heavily as the 

variance in the filter window increases. The filter therefore 

smoothes more in homogeneous areas, but provides a signal 

estimate closer to the observed value of the center cell in 

heterogeneous areas. The Frost filter has no user-defined 

parameters. The mathematics behind Frost filter is given below. 

A Frost filter adapts to the noise variance within the filter 

window by applying exponentially weighting factors M as given 

in Equation (16). These weighting factors decrease as the 

variance within the filter windows reduces. 

Mn = exp(-(DAMP*(S/IM)^2) * T)   (16) 

In the Equation, DAMP is a factor that determines the extent of 

the exponential damping for the image. The larger the damping 

value, the heavier is the damping effect. Typically the value is set 

to 1. S is the standard deviation of the filter window, Im is the 

mean value within the window and T is the absolute value of the 

pixel distance between the center pixel to its surrounding pixels 

in the filter window. The value of the filtered pixel is replaced 

with a value calculated from weighted sum of each pixel value 

Pn and the weights of each pixel Mn in the filter window over 

the total weighted value of the image as given in Equation (17). 
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Img(i,j) = ΣPn*Mn / ΣMn    (17) 

The parameters in the Frost filter are adjusted according to the 

local variance in each area. Low variances causes extensive 

smoothing and high variance, smoothing is normal and edges are 

also retained.   

• Median Filter 

This filter first sorts the surrounding pixels values in the window 

to an orderly set and replaces the center pixel within the define 

window with the middle value in the set. Median filtering is a 

non-linear filtering technique that works best with impulse noise 

(salt and pepper noise) whilst retaining sharp edges in the image. 

The main disadvantage of the median filter is the additional 

computation time needed to sort the intensity value of each set. 

• Kaun Filter 

The Kaun Adaptive Noise Smoothing filter uses a minimum 

mean square error calculation to estimate the value of the true 

signal for the center cell in the filter window from the local 

statistics. It is similar in approach to the Lee filter, but makes 

simplifying assumptions in the calculations. The Adaptive Noise 

Filter calculates the signal estimate from the local mean and 

variance, and the noise standard deviation (assumed to be 

constant for the entire image); it assumes a Gaussian (normal) 

distribution for the speckle noise. Kaun filter has no user defined 

parameters. The equations used during denoising while using 

Kaun filter is described below. 

The Kaun filter is considered to be more superior than the Lee 

filter. It does not make an approximation on the noise variance 

within the filter window. The Kaun filter simply models the 

multiplicative model of speckle into an additive linear form as in 

Equation (18), but it relies on the ENL from a medical image to 

determine a different weighting function W given in Equation 

(3.19) to perform the filtering. 

W = (1 x Cu/Ci)/(1 + Cu)    (18) 

The weighting function is computed from the estimated noise 

variation coefficient of the image, Cu given in Equation (19) 

  
ENL

1
Cu =      (19) 

and Ci is the variation coefficient of the image given in Equation 

(20). 

Ci = S/Im     (20) 

where S is the standard deviation in filter window and Im is 

mean intensity value within the window. The only limitation with 

Kuan filter is that the ENL parameter is needed for computation 

EXPERIMENTAL RESULTS 

To evaluate the proposed models, eight performance metrics 

were used. They are, Noise Mean Value, Noise Standard 

Deviation, Mean Square Difference, Equivalent Number of 

Looks, Deflection Ratio and Figure of Merit, Peak Signal to 

Noise Ratio (PSNR) and Denoising time. The explanation of the 

first six parameters are given in Mastriani and Giraldez (2006). 

Four ultasound images were selected for testing the proposed 

models. All the proposed models were executed on a Pentium IV 

machine with 512 MB RAM and were developed in MATLAB 

7.3. The test original images used are given in Figure 4 and 20% 

speckle noise was introduced in all these images. The 

performance of the proposed hybrid models, namely, ADFK, 

ADFL and ADFF models were judged by comparing the result 

with the conventional models. The models chosen for 

comparison are median filter, Kaun Filter, Lee Filter, Frost Filter, 

SRAD filter and SRAD + Median Filter (Base Model). 

 

    
US 1 US 2 US 3 US 4 

Figure 4 : Original Images 

A. Noise Mean Value  

The Noise Mean Value was calculated for all the test images, 

before and after filtering, for all filters and the results obtained 

are shown in Table 1.  
 

Table 1 :  Noise Mean Value  

Filter Model US 1 US 2 US 3 US 4 

Original-Noisy Image 90.0890 91.8464 90.1470 91.2387 

Median 88.4311 88.7546 88.4643 87.9920 

Kaun 87.8221 88.1112 88.3481 88.5734 

Lee 87.8474 88.3232 88.7772 88.9121 

Frost 87.6463 89.3245 87.7465 87.5245 

SRAD 89.8475 90.3232 88.9932 88.7395 

Base 88.4311 87.1112 88.1320 88.9023 

ADFK 84.4567 85.3488 84.9001 85.0999 

ADFL 84.9782 85.4921 84.9102 84.7377 

ADFF 84.3245 85.0032 84.0902 84.1293 

 

From the Noise Mean Values projected in Table 1, it is clear that 

all the three proposed hybrid models produce better results than 

the conventional models. To evaluate the overall model 

performance, the average value of the four models were 

calculated. From the Table, it can be seen that among the ten 

models, ADFF produce better results in all the four images. This 

was followed by ADFL and ADFK.  

B. Noise Standard Deviation (NSD) 

 The noise standard deviation obtained for the four test 

noisy images are projected in Table 2. 
 

Table 2 :  Noise Standard Deviation (NSD) 

Filter Model US 1 US 2 US 3 US 4 

Original-Noisy Image 43.9961 43.8271 43.9230 43.8977 

Median 42.5373 41.9920 42.5331 42.6792 

Kaun 40.8363 40.3774 40.0094 40.0094 

Lee 40.7465 40.6453 40.4231 40.2291 

Frost 40.8645 40.0094 40.9921 40.5671 

SRAD 32.6884 32.9122 32.5992 32.7912 

Base 32.8978 32.8688 32.9812 32.9991 

ADFK 31.9212 31.6673 31.9806 31.7892 

ADFL 31.8664 31.3338 31.7884 31.6732 

ADFF 31.7102 31.7449 31.8929 31.6412 

 

From the results, it could be seen that the ADFF filter again 

outperforms all the other proposed models and the conventional 
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models. This result is at par with the results of Table 2, which 

shows that the NSD results are consistent. 

C. Mean Square Difference (MSD) 

The Mean Square Difference (MSD) obtained for all the three 

proposed models and the selected six conventional filter models 

are shown in Table 3. 
 

Table 3 : Mean Square Difference (MSD) 

Filter Model US 1 US 2 US 3 US 4 

Original-Noisy Image 798.4422 732.8777 724.0867 749.8947 

Median 797.8754 733.1891 726.9232 749.8964 

Kaun 797.9193 782.3323 727.3122 720.7694 

Lee 698. 8832 683. 1033 675.1129 621.9328 

Frost 661. 2210 683. 0054 628.0098 620.7473 

SRAD 762.9872 783.1987 775.8934 722.0909 

Base 563.0003 554.6344 576.3985 588.1299 

ADFK 560.3834 553.6632 577.1002 567.3876 

ADFL 533.2256 533.1921 566.9854 560.7479 

ADFF 522.8319 521.8882 549.3651 538.2821 

 

The results again projected that the ADFF model is the best in 

removing the speckle noise from the input image.  

D. Equivalent Numbers of Looks (ENL) 

The effective equivalent number of looks is a statistics of the 

speckle in an image. The ENL for the various test images is 

presented in Table 4. 
 

Table 4 : Equivalent Numbers of Looks (ENL) 

Filter Model US 1 US 2 US 3 US 4 

Original-Noisy Image 11.093 11.983 11.121 11.392 

Median 13.980 13.746 14.938 15.035 

Kaun 15.752 16.962 17.838 17.424 

Lee 17.652 16.868 16.847 16.573 

Frost 15.643 16.345 16.533 15.939 

SRAD 20.010 19.228 26.789 20.309 

Base 21.960 23.274 22.864 21.953 

ADFK 37.212 37.893 37.123 38.049 

ADFL 37.009 36.098 36.846 37.909 

ADFF 38.302 39.088 38.984 39.088 

 

As seen from the table, ADFF hybrid model performed better at 

denoising while comparing the other models. This was followed 

by ADFK and ADFL. Among the conventional filters, Base 

model, SRAD and Lee filter produced better results.   

E. Deflection Ratio (DR) 

The deflection ratios obtained are tabulated in Table 5. Again the 

results projected indicate that the ADFF model is the best among 

proposed and conventional filters. 
 

Table 5 :  Deflection Ratio (DR) 

Filter Model US 1 US 2 US 3 US 4 

Original-Noisy  

Image 
2.56E-15 2.57E-15 2.40E-16 2.49E-15 

Median 2.57E-16 1.05E-16 1.58E-16 1.03E-16 

Kaun 3.27E-16 3.92E-16 4.00E-16 4.39E-16 

Lee 3.84E-16 4.42E-16 4.12E-16 4.19E-16 

Frost 3.86E-16 4.85E-16 3.27E-16 3.61E-16 

SRAD 4.40E-15 4.14E-15 4.12E-15 4.36E-15 

Base 5.99E-15 5.30E-15 5.76E-15 5.98E-15 

ADFK 7.86E-15 7.74E-15 7.27E-15 7.80E-15 

ADFL 6.74E-15 6.27E-15 6.23E-15 6.90E-15 

ADFF 8.59E-15 8.99E-15 9.14E-15 9.33E-15 

 

The results obtained portray the fact that, in terms of Deflection 

ratio (DR), the denoised image of ADFF model has the minimum 

deflection from the noisy image. As with other performance 

metrics, the next highest performance was produced by ADFL 

and ADFK.  

F. Pratt’s Figure Of Merit (FOM) 

The Pratt’s Figure Of Merit (FOM) obtained are shown in Table 

6. 
Table 6 :  Figure Of Merit (FOM) 

Filter Model US 1 US 2 US 3 US 4 

Original-Noisy Image 0.3027 0.3072 0.3026 0.3002 

Median 0.4004 0.4212 0.4120 0.4099 

Kaun 0.4217 0.4223 0.4214 0.4229 

Lee 0.4228 0.4112 0.4223 0.4632 

Frost 0.4213 0.4213 0.4312 0.4344 

SRAD 0.7257 0.6841 0.6958 0.7193 

Base 0.7399 0.7001 0.7199 0.7200 

ADFK 0.7690 0.7653 0.7652 0.7610 

ADFL 0.7490 0.7209 0.7363 0.7437 

ADFF 0.7990 0.7892 0.7877 0.7813 

 

By the nearing value to unity achieved for the proposed model, it 

is clear that the proposed model is successful in removing 

maximum speckle noise from the noisy image. The results 

projected in Table shows that the ADFF, ADFK and ADFL 

having an average FOM value of  0.7893, 0.7374 and 0.7651 

respectively, produces better FOM than all the other models. 

G. Peak Signal to Noise Ratio (PSNR) 

PSNR is an engineering term for the ratio between the maximum 

possible power of a signal and the power of corrupting noise that 

affects the fidelity of its representation. Because many signals 

have a very wide dynamic range, PSNR is usually expressed in 

terms of the logarithmic decibel scale. The PSNR is most 

commonly used as a measure of quality of reconstruction of 

denoising algorithm. The PSNR values obtained during 

experimentation is projected in Table 7. 
 

Table 7 : PSNR (dB)  

Filter Model US 1 US 2 US 3 US 4 

Original-Noisy Image 33 32 36 34 

Median 31 32 33 32 

Kaun 30 31 30 31 

Lee 30 30 38 29 

Frost 40 29 34 26 

SRAD 39 29 34 30 
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Base 39 36 39 37 

ADFK 44 42 41 42 

ADFL 43 41 40 40 

ADFF 45 45 45 46 

 

The high PSNR obtained gives the understanding that the visual 

quality of the denoised image is good. According to Venkatesan 

et al. (2008), an improved denoising algorithm is recognized by a 

high PSNR or a lower MSE.  In agreement with this, the results 

of the proposed systems with high PSNR prove that they are an 

improved version over existing methods. Similarly, according to 

the report of Schneier and Abdel-Mottaleb (1996), a PSNR value 

in the range 30-40 indicates that the resultant image is a very 

good match to the original image. In accordance with this report, 

the results of all the three the proposed hybrid algorithms 

produce PSNR values in the range 40-46dB proving that it is an 

enhanced version when compared with the conventional 

algorithms.  

 

H. Despeckling Time 

Table 8 shows the time taken by the proposed and conventional 

filters to perform the denoising operation.  
 

Table 8 : Despeckling time (seconds) 

Filter Model US 1 US 2 US 3 US 4 

Median 0.18 0.15 0.178 0.16 

Kaun 0.19 0.17 0.08 0.18 

Lee 0.20 0.21 0.20 0.21 

Frost 0.17 0.17 0.16 0.17 

SRAD 0.18 0.18 0.17 0.18 

Base 0.19 0.19 0.19 0.19 

ADFK 0.14 0.15 0.13 0.14 

ADFL 0.16 0.15 0.16 0.15 

ADFF 0.12 0.11 0.11 0.11 

 

While considering the execution time, the ADFF model was the 

quickest in despeckling the noisy image, which was followed by 

ADFK and ADFL. This clearly shows that the introduction of 4th 

order PDE based anisotropic diffusion function combined with 

knau, lee and frost filters converges quickly, which consequently 

speeds up the despeckling process.   

According to Müldner et al. (2005), PSNR and speed are the two 

most important performance factors of any denoising algorithm. 

From the results, it is evident that the speed of the proposed 

denoising algorithms are faster when compared to the standard 

algorithms and therefore makes it an attractive option for several 

advanced applications in the field of medical imaging.  

The visual comparison of the denoised image produced by the 

various conventional and proposed filters is shown in Figure 5 

for image UC 1. Similar quality was observed with all other test 

images also. 
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Figure 5 : Visual comparison of UC 1 

CONCLUSION 

Thus, the various results of the experiments conducted clearly 

indicate that the images produced by the proposed despeckling 

algorithm are of good visual quality and therefore can be applied 

to most of the image medical processing systems. The three 

hybrid models can be combined with wavelet shrinkage function 

to improve the convergence time. The three shrinkage functions, 

VisuShrink, BayesShrink and PureShrink can be applied and the 

performance can be compared. The present work focused on 

producing despeckling algorithms which reduces the noise from 

the noisy image. The work has not considered the memory 

efficiency and computation complexity, which can be analyzed 

in future. 
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