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Abstract – Large-scale image data sets are being 
exponentially generated today. Along with such data 
explosion is the fast growing trend to outsource the 
image management systems to the cloud for its 
abundant computing resources and benefits. How to 
protect the sensitive data while enabling outsourced 
image services, however, becomes a major concern. 
Earlier method used compressed sensing for image 
reconstruction purpose. In that, it supports only 
typical sparse data acquisition and reconstruction in 
standard compressed sensing context. However, dense 
component of image is not considered. In order to 
provide the correlation of dense and sparse signal of 
the image we propose a correlated compressed sensing 
algorithm. This algorithm takes an advantage of the 
correlation between dense and sparse components of 
the signal in the recovery procedure at the image 
decoder side. In this way, we are able to reduce the 
number of measurements and computation time while 
obtaining the same accuracy. 
 
Keywords- Correlated compressed sensing, security, 
privacy, cloud computing, image reconstruction. 
 

I. INTRODUCTION 
The advancement of information and computing 
technology, wide range datasets are being exponentially 
generated nowadays. Examples under various application 
contexts include medical images, remote sensing images, 
satellite image databases, etc. Along with such data 
explosion is the fast-growing vogue to outsource the 
image management systems to cloud and leverage its 
economic yet lavish computing resources to efficiently 
and effectively acquire, store, and share images from data 
owners to a large number of data users .Although in order 
to become truly successful, it still faces a number of 
fundamental and critical challenges, among which 
security is the top item. This is due to the fact that the 
cloud is an open environment operated by external third 
parties who are usually outside of the data owner/users' 

trusted domain. On the other hand, many image datasets, 
e.g., the medical images with diagnostic results for 
different patients, are privacy-sensitive by its nature. 
Thus, it is of critical importance to ensure that security 
must be embedded in the image service outsourcing 
design from the very beginning. 
 
      Reconstructing images from compressed samples 
requires solving an optimization problem; it can be 
burdensome for users with computationally weak devices, 
like tablets or large-screen smart phones. OIRS aims to 
shift such expensive computing workloads from data 
users to cloud for faster image reconstruction and less 
local resource consumption, yet without introducing 
undesired privacy leakages on possibly sensitive image 
samples or the recovered image content.More than that 
we need to do more number of measurements and 
mathematical calculations. In that, it supports only typical 
sparse data acquisition and reconstruction in standard 
compressed sensing context. However, dense component 
of image is not considered. In order to provide the 
correlation of dense and sparse signal of the image we 
propose a correlated compressed sensing algorithm. This 
algorithm takes an advantage of the correlation between 
dense and sparse components of the signal in the recovery 
procedure at the image decoder side. In this way, we are 
able to reduce the number of measurements and 
computation time while obtaining the same accuracy. To 
meet these challenging requirements, a core part of the 
OIRS design is a tailored light weight problem 
transformation mechanism, which can help data 
owner/user to protect the sensitive data contained in the 
optimization problem for original image reconstruction 
and to reduce the number of measurements. 
 

II. ALLIED WORK 
Correlated compressed sensing is a new image 
representation method, which is different from the 
previous works oncompressive imaging, which treat the 
whole image as a compressible signal, here we 
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decompose an image into two components: a dense 
component and a sparse component. The decomposition 
helps to generate a sparser signal which is proved more 
suitable for Compressed Sensing. The proposed algorithm 
takes advantage of the correlation between dense and 
sparse components of the signal in the recovery procedure 
at the image decoder side. . The idea is to store the 
compressed image samples on behalf of the whole image, 
either in compressed or uncompressed format, on storage 
servers. Their results show that storing compressed 
samples offers about 50% storage reduction compared to 
storing the original image in uncompressed format or 
other data application scenarios where data compression 
may not be done. But their work does not consider 
security in mind, which is an indispensable design 
requirement in correlated compressed sensing.In fact, 
compared to that only focuses on storage trim down, our 
proposed correlated compressed sensing method aims to 
achieve a much more ambitious goal, which is an 
outsourced image service platform and takes into 
consideration of security, efficiency, effectiveness,and 
complexity from the very beginning of the service flow 
with the help of OIRS. 
 

III. PROBLEM STATEMENT 
A. Service model and threat model 
The basic service model in the OIRS architecture includes 
the following: At first, data owner acquires raw image 
data, in the form of compressed image samples, from the 
physical world under different imaging application 
contexts. To trim down the local storage and maintenance 
overhead, data owner later outsources the raw image 
samples to the cloud for storage and processing. The 
cloud will on-demand reconstructs the images from those 
samples upon receiving the requests from the users. In our 
model, data users are assumed to possess mobile devices 
with only limited computational resources. 
 

 
 
 
We consider a semi-trusted cloud as the adversary in 
OIRS. The cloud is assumed to honestly perform the 
image reconstruction service as specified, but be curious 
in learning owner/user's data content. Because the images 

samples captured by data owners usually contain data 
specific/sensitive information, we have to make sure no 
data outside the data owner/user's process is in 
unprotected format. 
 
B. Design goals  
Our design goals for OIRS under the aforementioned 
service and threats model consist of the following. 

 Security: OIRS should provide the strongest 
possible protection on both the private image 
samples and the content of the recovered images. 

 Effectiveness: OIRS should enable cloud to 
effectively perform the image reconstruction 
service over the encrypted samples. 

 Efficiency: OIRS bring savings from the 
computation and/or storage aspects to data 
owner and users.  

 Extensibility: In addition to image 
reconstruction service, OIRS should be made 
possible to support other extensible service 
interfaces and even performance speedup via 
hardware built-in design. 

 
IV. CORRELATED COMPRESSED SENSING 

This proposes a new image representation method based 
on CS. The input image x is first decomposed into a dense 
component xୈand a sparse component xୗthrough a 
transform T. In our scheme, we use discrete wavelet 
transform ψ to accomplish the decomposition. The two 
components are measured separately. Forxୈ, we simply 
take direct measurements. For the sparse componentsxୗ, 
we will take random measurements by CS ensemble Φ . 
In order to reconstruct the image, we have to recover the 
signal separately. The dense component xୈ෦could be 
simply recovered by an inverse transform. In order to 
reconstruct the sparse signal xୗ෥  we have to solve the 
optimization problem. For more accuracy, we first predict 
it by interpolation of xୈ෦. The prediction xୗෝ by 
interpolation recovers part of the high frequency 
information of the original signal and will help to improve 
the reconstruction performance. At last, xୈ෦and xୗ෥   are 
combined together and processed by an inverse transform 
T. 
 

V. OIRS DESIGN 
While compressed sensing simplifies the data acquisition 
at data owner, it makes the data recovery from the 
compressed samples a computationally intensive task. As 
introduced in the preliminary, it requires the data users to 
solve an optimization problem, which could be very 
challenging for the data user with computationally weak 
devices like smart phones. Therefore, enabling a secure 
data recovery service by leveraging the cloud is of critical 
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importance in our proposed OIRS architecture. Due to the 
sensitive nature of data, to outsource compressed image 
samples directly to the cloud is prohibited. And we need 
to protect the image samples before outsourcing them to 
the cloud. The cloud should not be able to learn the 
private content of the image samples either before or after 
the image reconstruction. 
Framework and security definitions of  OIRS 
Given the problem formation for image reconstruction in 
Section III-C,our design challenge in OIRS is how to let 
the cloud efficiently solve the optimization problem, Ω= 
D (F; y; I; 1T), for image reconstruction without learning 
content of either compressed image samples y or the 
reconstructed image data g. To meet these design 
challenges, 
 
Definition 1: A transformation scheme ᴦ = D(KeyGen, 
ProbTran, ProbSolv, DataRec) is secure if 
 
∀Ω0,Ω1 : Pr[K←keyGen(1k):ProbTran(K,Ω0)=Ωk] 
                     -Pr[K←keyGen(1k):Probtran(K,Ωk]≤μ 
whereμ is a negligible function. 
 
From the perspective of in distinguish ability, such a 
security formulation is also loosely related to the general 
formulation of differential privacy [15], [16].  
The blueprint of problem transformation 
According to our framework and security definition, the 
purpose of ProbTran is to transform Ω into a random Ωk 
where the latter shares the same problem structure as the 
former, y and F are supposed to be protected against the 
cloud, while I and 1Tare public information. Thus, the 
challenge of the transformation based design is that we 
have to ensure such public information will not be 
maliciously leveraged by the cloud to tamper the overall 
protection of OIRS. 
 
1) We use a random generalized permutation matrix π 
with positive entries, i.e., the product of a non-zero 
positive diagonal and a permutation matrix, to rewrite the 
inequality constraints. 
min1T. g 
subject to               y =  F .g, π  . g≥0. 
 
Note that π.g ≥ 0 is equivalent to g ≥ 0. 
 
2) We randomly pick a 2n x 2n invertible matrix Q and a 
2n x 1 vector e to protect the solution g via af_ne 
mapingg = Qh– e. 
min1T.(Qh- e) 
subject to                          F.Q . h = y + F .e; 
π.Q .h ≥ π.e. 
 

3) We multiply a random 2n x  mmatrix M to equality 
constraints  
 
 
and later mix the result together with the 
inequality constraints 
 
min1T. (Qh- e) 
subject to                            F . Q .h = y + F .e; 
 
This problem is equivalent to the one in Step 2 
. 
4) We multiply a random m_minvertible matrix P to the 
both sides of equality constraints 
 
min1T. (Qh- e) 
subject to                         PFQ . h = P . (y + F .e). 
 
 
The scheme details 
Scheme details: Based on the above one, we describe the 
complete protocol for the OIRS framework ᴦ. 
 
Algorithm 1 Key Generation 
 
Data: security parameter 1k ,random coins σ 
Result: K D (P;Q; e; π;M) 
% discussion on choice of k deferred in Section V; 
begin 
1 uses  σ  to generate random P; e; π; 
2 usesσ to generate random Q and M; 
% satisfying the structure of Ωk in Prob. 5 
3 return secret key K = (P;Q; e; π;M) ; 
 
Algorithm 2 Problem Transformation Step 1 
 
Data: transformation key K and original LP Ω 
Result: protected sample y’ in Ωk 
begin 
1 picks P; e from K and F from Ω; 
2 return y’ = P . (y + F .e) ; 
 
Algorithm 3 Problem Transformation Step 2 
 
Data: transformation key K and original LP Ω 
Result: protected coefficient matrices F’,π′ in Ωk 
begin 
1 picks (P;Q; π;M) in K and F in Ω; 
2 computes F’= PFQ and = (π- MF)Q; 
3 return transformed F’,π′; 
 
Algorithm 4 Original Answer Recovery 
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Data: transformation key K and protected answer h of  Ωk 
Result: answer g of original problem Ω 
begin 
1 picks Q; e from K; 
2 return g = Qh- e ; 
 
Data sampling phase 
 

1) Data owner picks a fresh seed and generates a 
secret key K = (P,Q,e,π, M) 
 

2) He acquires the sample y = Rx = RVf=  Af to 
cloud 

 
      We assume the samples and the related seeds fy’; sg 
are all stored in an authenticated manner at cloud. Assume 
that data user issues an image recovery request for an 
image sample y’ to data owner. 
 
Image recovery phase 
 
1) Data owner downloads the seed s from cloud, 
computesF(sk; s), and uses σ to regenerate the matrix R 
and the key K D (P;Q; e;M) from KeyGen.He calls 
ProbTran2(K; F) to get (F0; _0) and sends them to cloud.  
 
2) With Ωk= (F’; π′; y’;1T), the cloud calls ProbSolv (Ωk ) 
to output answer h to user, together with seeds. 
 
3) The user computes F(sk; s), and uses σ to generate the 
key K from KeyGen(1k). He then calls 
DataRec(K; h) to get g = Qh- e and recovers the image x 
=  Vf, where f is derived from g. 
The extension to non-sparse data 
So far, we have been assuming that OIRS operates over 
sparse data only. That is, f is exactly sparse. However, 
there are many cases where physical data sources are not 
exactly sparse. To further broaden the application 
spectrum of OIRS design, we now show how to extend 
from the case of sparse data to the non-sparse general 
data. Specifically, assuming under orthonormal basis V, 
the image data x's coefficient vector f is non-sparse. We 
denote fs as an s-sparse approximation of f, which can be 
derived by setting all but the largest s entries of fto zero. 
Let xs= Vfs. Because V is orthonormal, then 

 
║x - xs║2 = ║Vf- Vfs║2  = ║f - fs║2. 

 
And its difference compared to the actual s-sparse 
approximation fs satisfies the following bound, 

║ f* - f ║ ≤ Co/√2. ║ f - fs ║1, 
 
Where C0 is some constant. 

 
The above elaboration suggests that the aforementioned 
OIRS design can be still applied to the non-sparse general 
data.  

VI. THEORETICAL ANALYSIS 
Efficiency analysis 
The most time-consuming operations in the proposed 
transformation is the matrix-matrix operations, which cost 
asymptotically O(n∝)for some 2 <∝< 3 due to m < 2n. On 
the other hand, solving the LP problem ΩK usually 
requires more than O(n3) time, e.g. [23]. Clearly, 
outsourcing image recovery service to cloud provides data 
owners/users considerable computational savings in 
theory. Moreover, with our proposed transformation, the 
cloud process can utilize any existing solvers for the LP 
problem ΩK , which ensures the cloud side efficiency  
     This study in [13] has shown that using compressive 
sensing can reduce storage overhead up to 50%, 
compared to storing the original data or images in 
uncompressed format. 
 

VII. FURTHER DISCUSSIONS 
Enabling secure image outsourcing services will 
significantly boost the wide application spectrum of 
secure computing outsourcing. For example, the proposed 
OIRS can be adopted by image service applications like 
MRI in health care system, remote sensing in 
geographical system, and even military image sensing in 
various mission critical contexts. In the following, we 
give some further discussions on how the proposed OIRS 
can serve as a stepping stone and discuss the possible 
performance speedup through hardware built-in design. 
A.   Speedup with hardware built-in design 
In order to make these promising image services in OIRS 
truly efficient and practically deployable, it is pivotal to 
further explore how to embed the security and efficiency 
guarantee from the start through a hardware design can 
significantly boost the performance of functionalities that 
are to be implemented in the proposed service 
architecture.For example, by giving the hardware design 
transformed image samples P(y +  Ae) and the sensing 
matrix PAQ satisfying (PAQ) . (Q-1(f + e)) = P(f + 
Ae).Itwould still give us a randomly transformed output 
Q-1(f + e) as the encrypted result.  
 

VIII. EMPIRICAL EVALUATIONS 
A. EXPERIMENT SETTINGS 
We now show the experiment results of the proposed 
correlated compressed sensing with OIRS. We implement 
both the data owner/user and the cloud side processes in 
MATLAB and use the MOSEK optimization toolbox 
(http://www.mosek.com/) as the LP solver. All 
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experiments are done on the same workstation with an 
Intel Core  i5 CPU running at 2.90 GHz and 6 GB RAM.  
 
B. EFFICIENCY EVALUATION 
We first measure the efficiency of the proposed OIRS. 
Specifically we focus on the computational cost of 
privacy assurance done by the data owner and data users, 
i.e., the local side, and the cost done by the cloud side. 
The cloud solves it for the data user, who then performs a 
decryption process to get the original image data vector 
andthen recover the image. For completeness, we report 
the time cost here. For 32x32 image block it is 0.009 sec 
on average, while for 48_48 image block size it is 0.021 
sec on average. 
 
C. EFFECTIVENESS EVALUATION 
We next assess the effectiveness of OIRS design. Our 
goal is to show the correctness of the design and also the 
empirical results on the privacy assurance. 
1. CORRECTNESS EVALUATION 
For correctness of the design, we show that all the images, 
after transformation and later recovered on the data user 
side, still preserves the same level of visual quality as the 
original images. Here we want to point out that the 
reconstructed image quality increases along with the 
number of measurements and the more the better. In our 
experiments, we follow the ``four-to-one'' rule according 
to [11].  
 
2.PRIVACY-ASSURANCE EVALUATION 
Recall that OIRS provides the privacy-assurance that 
users can harness the cloud to securely recover the image 
without revealing the underlying image content. This can 
be achieved because what cloud really recovers, h, 
protects the original sparse vector h via a general afine 
mapping g =  Qh- e with a random choices of Q and e. To 
give 
the empirical results on privacy-assurance,) the recovered 
image before user decryption, i.e., recovering using the 
blinded vector h = Q -1(g + e). 

IX. CONCLUSION 
In this paper we have proposed correlated Compressed 
Sensing, for image reconstruction. In this   we apply 
correlated Compressed Sensing to image representation 
and propose a new image representation scheme. 
Different from the previous works on compressive 
imaging, which treat the whole image as a compressible 
signal, we decompose an image into two components: a 
dense component and a sparse component. The 
decomposition helps to generate a sparser signal which is 
proved more suitable for Compressed Sensing. The 
proposed method takes advantage of the correlation 
between dense and sparse components of the signal in the 

recovery procedure at the image decoder side.we also 
demonstrate a proof-of-concept of possible performance 
speedup through hardware built-in system design, which 
we believe is our important future work to be pursued. 
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