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ABSTRACT: Various algorithms such as ObjectRank and PageRank, the latter created by Larry Page and used in 
Google Search Engine, were highly expensive as they required a PageRank-style iterative computation over the full 
graph. BinRank, a hybrid algorithm proposed uses an index of pre-computed results for some/or all keywords being 
used by the user. It approximates ObjectRank result by materializing a relatively smaller subsets of data graphs, which 
are generated by partitioning all the terms in the corpus based on their co-occurrence. BinRank can achieve sub-second 
query execution time without affecting the quality of the search results. 
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I. INTRODUCTION 
 
Before BinRank, algorithms such as PageRank and ObjectRank were used for searching of information over the 

internet. The PageRank algorithm [1] utilized the Web graph link structure which was then used to assign a global 
importance to Web Pages. PageRank followed the outgoing links with uniform probability and the score was 
independent of the query. A more dynamic approach of PageRank, known as Personalized Page Rank (PPR) was 
developed due to the increasing demand for greater flexibility in ranking of the web pages. The basic idea of PPR is 
simple: instead of distributing the sources of PageRank uniformly, the distribution is improved by modifying it 
according to each individual query [2]. For a given preference set, it performs an expensive fix-point and iterative 
computation over the complete Web graph. Thus the issue of scalability is a huge disadvantage of this algorithm. 
ObjectRank extends the PPR to perform the keyword search in databases rather than the Web graph. Another novelty 
of ObjectRank is that it is not global as google, i.e., for each <keyword, object> we compute an ObjectRank value [3]. 
It has been successfully applied on databases having social networking components such as collaborative product 
design andbibliographic data. But unfortunately, ObjectRank suffers from the same scalability issues as that of PPR, 
since it requires various iterations over all links and nodes of the entire database graph [4]. The ObjectRank has 2 
modes: Offline and Online. The Online mode runs the ranking algorithm only when the query is received, which takes 
up too much time on long graphs. For example, on a graph of articles of English Wikipedia with 3.2 million nodes and 
109 million links, even a fully optimized in-memory implementation of ObjectRank takes 20-50 seconds to run [4]. In 
the Offline mode, the top-k results are computed in advance for a query. This is quite expensive in terms of storage 
space and is not suitable for the terms outside thequery workload that the user may search for. Therefore, in this paper 
we have introduced a hybrid approach called BinRankwhere the query accessing time can be traded off with storage 
and preprocessing time. BinRank closely approximates the ObjectRank scores as it applies ObjectRank on a smaller 
subgraph rather than the complete graph. These subgraphs are computed offline in advance and are stored in memory. 
The precomputation can be parallelized with linear scalability. An example of full Wikipedia data set is taken by us 
where BinRank can answer any query in less than 1 second, by precomputing about a thousand subgraphs, which takes 
only about 12 hours on a single CPU. While deciding on the precomputation of the subgraph, there are usually two 
problems faced: a) the number of subgraphs to compute b) the construction of each subgraph. The intuition behind our 
approach is that a subgraph that contains all objects and links relevant to a set of related terms should have all the 
information needed to rank objects w.r.t. one of these terms. For 1), we group all terms into a small number (around 
1,000 in case of Wikipedia) of “bins” of terms based on their co-occurrence in the entire data set. For 2), we execute 
ObjectRank for each bin using the terms in the bins as random walk starting. 
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II. OBJECTIVE 
 

The objective of the paper is to:  
 Approximate ObjectRank by using Materialized SubGraphs (MSGs), which can be precomputed offline.  
 Use of ObjectRank itself to generate MSGs for “bins” of terms. 
 Introduce a greedy algorithm that minimizes the number of bins by clustering terms with similar posting lists. 

 
III. OBJECTRANK-BACKGROUND 

 
A. Data Model 

Unlike PageRank, ObjectRank performs top-k relevance search over a database rather than a Web Graph. The data 
graph G (V, E) is used to represent the objects and the semantic relationships as nodes and edges, where edges 
represent the hyperlinks between Webpages in a PageRank.  A node v ϵ V contains a set of keywords and its object 
type.  For example, when a paper u cites another paper v, ObjectRank includes in E an edge e = (u→v) that has a label 
“cites.” It can also create a “cited by”—type edge from v to u .  By assigning different edge weights to different edge 
types, ObjectRank can capture important domain knowledge. 

  
B. Query Processing 

The query processing in ObjectRank uses Random Surfer Model [5]. The model starts from a random node vi 
among nodes that contain the keyword. The starting points are called a base set. For a keyword k, the keyword base set 
of k, BS (k), consists of nodes in which k occurs. Any node in Graph G can be a part of BS (k), which makes it support 
full degree of personalization. At each node, the surfer follows outgoing edges with a probability p, or jumps back to a 
random node in BS (k) with probability (1-p)2. At a node v, when an edge is determined to be followed, each edge e 
that is originated from v is chosen with probability w ((e)) /(OutDegree(ߣ(e),v)),   where OutDegree  (k ,v) denotes the 
number of outgoing edges of v whose edge types are similar to k. The score of vi is the probability of r (vi) that a 
random surfer is found at vi at a certain moment. 

 
C. Quality compared to PageRank 

The ObjectRank is in contrast with the PageRank approach which returns objects containing the keyword that is 
sorted according to their score. ObjectRank on the other hand, it utilizes the link structure that captures the semantic 
relationships between objects which is useful in showing even those object that don’t have the keyword but are highly 
relevant and thus can be included in the top-k list. This makes the ObjectRank of having a superior result quality.[6] 

 
IV. BIN CONSTRUCTION 

 
A set of MSGs for terms of a dictionary are constructed by partitioning them into a set of term bins, which is based on 
co-occurrence. We generate an MSG for every bin on intuition that the sub graph that contains all the objects and links 
which are relevant to the set of related terms must have all the information needed to rank objects with respect to one of 
those terms. There are two important goals while constructing a bin. 1) Controlling the size of each bin. 2) Minimizing 
the number of bins to save the preprocessing time. To achieve the first goal a maxBinSize parameter is introduced 
which limits the size of the union of the posting lists of the terms in the bin, called bin size. [7] 
 

V. VARIOUS MODELS OF BINRANK SYSTEM 
 

A. User Registration 
To access the BinRank system, each user must be registered and must have an account. New user can create a new 
id and choose a password, along with other basic details such as Name, country, etc. For the User Registration we 
created a Registration.jsp. Every member must have a unique id and a password for moving further. The 
information of each user is stored in login table.  
 

B. Search Query Optimization 
Now after the user logins, he is given an option to select the Key words of the search he intends to make. For 
example, if a user wants to search for a beach in Chennai, or Temples in Mumbai, he selects the first Keyword, i.e., 
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the Category from a drop down list and the next keyword by writing in the TextField and finally pressing the Search 
button.  
 

C. Index Creation 
When a user clicks on a link, an index is created in the PageRank table. The schema of the index is:  
 

Link Rank Key1 Key2 

www.mumbai.o
rg/beaches 

1 Temples Mumbai 

Figure 1: Schema of Index 
 
Users can search any kind of things in our application when we connect with Internet. Users query will be 
processed based on their submission, and then it will produce the appropriate result. Result will be produced based 
on BinRank.  
 

D. BinRank Algorithm Implementation 
A MSG will be generated for each bin based on a intuition that a subgraph that has all objects and links relevant to a 
set of related terms. The information is needed to rank the objects with respect to each other. Based on this index 
generation, the results will also be generated of the users' query. BinRank algorithm will use the indexing and 
ranking techniques to produce the efficient results in short time. 
 

E. Graph Based on Rank 
A graph will be generated based on the users' queries that are submitted. This graph will represent the search key-
word, number of websites produced for the search, the number of times that website occurred in the search result 
and the Rank of the website based on the user clicks. User may search the same key-word repeatedly, and the result 
may produce the same URLs. At that user will click some of the URLs; based on their clicks the Rank will be 
calculated. Based on the Number of times URL occurrence, Rank and Keyword the Graph will generate. 

 
Figure 2: Graph created using BinRank 

 
VI. CONCLUSION 

 
In this paper, we have proposed BinRank as a better and practical solution for dynamic authority-based searching. 
The technique is based on partitioning and approximating various sub graphs. BinRank offers a nice tradeoff 
between query time, preprocessing time and storage.  PageRank algorithm suffered from an expensive fix-point and 
iterative computation and scalability issues. ObjectRank extended the Personalized Page rank to perform search on 
databases rather than the Web graphs. Also it may/may not show only those objects that don't have the keyword but 
are highly relevant. It made it more superior but is suffered from the same scalability issues as that of PPR. 
BinRank applies ObjectRank on a smaller sub graphs rather than the compete graph, and these sub graphs are 
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computed offline. A set of MSGs are constructed by partitioning them into set of term bins, which is based on their 
co-occurrence. 
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