

ISSN (Online) : 2319 - 8753

 ISSN (Print) : 2347 - 6710

International Journal of Innovative Research in Science, Engineering and Technology

Volume 3, Special Issue 3, March 2014

2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st& 22nd March Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2163

Improving Fault Tolerance in Virtual Ma-

chine Based Cloud Infrastructure

Abstract— Cloud Computing is a style of Compu-

ting where service is provided across the internet using

different models. Fault tolerance is a major concern to

guarantee availability and reliability of critical services

as well as application execution. In this project work, we

propose a model to analyze how system tolerates the

faults and make decision on the basics of reliability of

the processing nodes, i.e. Virtual machines. If a

virtual machine manages to produce a correct result

within the time limit, its reliability increases, and if it

fails to produce the result within time or correct result,

its reliability decreases. If the node continues to fail, it is

removed, and a new node is added. There is also a min-

imum reliability level. If any processing node does not

achieve that level, the system will perform backward

recovery or safety measures. The proposed tech-

nique is based on the execution of design diverse va-

riants on multiple virtual machines, and assigning

reliability to the results produced by variants. The virtual

machine instances can be of same type or of different

types. The system provides both the forward and back-

ward recovery mechanism, but main focus is on for-

ward recovery.

Keywords— cloud computing, virtual machine, fault

tolerance, reliability

I.INTRODUCTION

Cloud computing share the resources like physical

services, storage, and networking. The cloud offers many

services through cloud service providers. The most

popular cloud service providers are Google, Amazon,

windows Azure etc...Each service provider provides

different services based on the demand of the users. For

example Amazon provide IaaS service Google Provides

all services like SaaS, PaaS and IaaS. The cloud

computing is based on the distributed concepts and it is

reliable to all users. This paper deals with the research

field of fault tolerance in cloud. In a cloud environment

there are many unknown nodes called Virtual machines

(VM). Virtual machine (VM) is an operating system

(OS) or program that can be installed and run virtually.

In other words, VM is a processing machine in the

server. In cloud computing, the user data is replicated in

many VM’s.

The user request is passed onto all the available

VM’s. If the particular VM fails then it will not respond

and, all the other active VMs respond to the request. The

fault tolerance measure available should identify the one

reliable VM among all the VM’s and respond to the

client request. This paper is used to identify the reliable

VM.

II.FAULT TOLEANCE AS A RE-

SEARCH ISSUE

Fault tolerance is a major problem to guarantee

availability and reliability of critical services as well as

application execution. Fault tolerance serve as an

effective means to address reliability concerns. Fault

tolerance means that system should continue to operate

under fault presence.

Cloud is vulnerable to a large number of system

failures and the traditional fault tolerance approaches are

less effective since cloud system’s architectural details

are not widely available to the users because of the

abstraction layers and business model of cloud

computing. Fault tolerance that uses the Virtualization

Technology (VT) can increase the reliability of

applications, but VM migration and consolidations are

difficult to achieve.

There are various faults which can occur in cloud

computing .Based on fault tolerance policies various

fault tolerance techniques[1] can be used that can either

be task level or workflow level .

Rajesh.S, Kanniga Devi.R

Graduate student, Dept of Computer Science and Engineering, Kalasalingam University, Tamil Nadu, India.

Dept of Computer Science and Engineering, Kalasalingam University, Tamil Nadu, India,

 Improving Fault tolerance in Virtual Machine Based Cloud Infrastructure

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2164

REACTIVE FAULT TOLERANCE: Reactive [1] fault

tolerance policies reduce the effect of Failures on

application execution when the failure effectively

occurs. There are various techniques which are based on

these policies like Checkpoint/Restart, Replay and Retry

and so on.

PROACTIVE FAULT TOLERANCE: The principle of

proactive [1] fault tolerance policies is to avoid recovery

from faults, errors and failures by predicting them and

proactively replace the suspected components by other

working components. Some of the techniques which are

based on these policies are Preemptive Migration,

Software Rejuvenation etc.

III.RELATED WORK

 A lot of work has been done in the area of fault

tolerance for standard cloud infrastructure. But there is

lot of research room available in fault tolerance of virtual

machine (VM) based cloud infrastructure. Cloud

infrastructure has introduced some new issues related to

Fault tolerance. These characteristics are different from

the existing traditional techniques.

 Huang et.al., [2] present Algorithm-Based Fault

Tolerance (ABFT) method. ABFT uses matrix or vector

level checksum in row and column to detect a faulty

processor in multiple processor systems. The method can

be used to detect and correct errors in matrix operations

such as addition, multiplication, scalar product, and

LU-decomposition performed in multiple processor

systems which may have one failed processor. In their

work, they focus on the problem of achieving a certain

reliability with the minimum cost in potentially faulty

clouds.

 Wenbing Zhao et.al., [12] propose a FT middleware

which implement a synchronized server replication

strategy, where a failed server is repaired with a

consistent state.

 Alain Tchana et.al., [13] suggest a fault tolerance

method collaborating cloud provider and cloud

customer. Their integrated approach makes fault

tolerance available in all levels of the cloud. However,

they are not making use of VM checkpoint solutions to

achieve optimum fault tolerance.

 Z. Dai et.al., [3] suggest transparent check pointing

at the user’s level provided by Distributed

Multithreaded Check Pointing. By considering economic

and dependability factors check points with various

parameters are fixed. If these parameters are not

satisfied, the thread is restarted.

 X. Kong et.al., [5] presents a model for virtual

infrastructure performance and fault tolerance. But it is

not well suited for the fault tolerance of real time cloud

applications. For the non-cloud applications, a baseline

model for distributed RTS is, distributed recovery block

proposed by K. H. Kim which is very basic in nature.

 J. Coenen et.al., [6] propose model, ―A formal

approach for the fault tolerance of distributed real time

system (RTS)‖ Traditionally, one of the backbones of

software reliability is avoiding the faults. Since cloud

architecture is very complex and built on data center

comprising thousands of interconnected servers with

capability of hosting a large number of applications and

distributed globally, fault prevention techniques in

developing stage is very tedious. Fault avoidance

techniques or fault removal techniques such as testing to

detect and remove fault, therefore, won’t be enough in

the case of cloud computing.

 S. Malik et.al., [18] propose model ―Time stamped

fault tolerance of distributed RTS‖. This model

incorporated the concept of time stamping with the

outputs. All of these models were defined for the real

time systems based on standard computing architecture.

 Slawinska et.al., [14] proposes that in order to

overcome VM failure, a Virtual Machine hook can be

set to ―resubmit‖ the failed VM. VM Crash is recovered

by ―one VM restart‖ functionality. Windows Azure

offers Fault Tolerance management with the replicas of

each VM and this solution is limited to the applications

developed in the Windows Azure platform. VM failure

of Amazon EC2 is take care by Simple Queue Service

(SQS) and Amazon Machine Image (AMI). Service

requests are queued up till they are executed properly, or

deleted by the user with the help of SQS. In EC2 we can

publish many Amazon Machine Images (AMI), on the

failure of an AMI, we can easily replace it with the help

of an API invocation.

 H.Chen et.al., [15] proposes that the function of

fault tolerance is to preserve the delivery of expected

services despite the presence of fault-caused errors

within the system itself. Errors are detected and

corrected, and permanent faults are located and removed

while the system continues to deliver acceptable service.

This goal is accomplished by the use of error detection

algorithms, fault diagnosis, recovery algorithms and

spare resources.

 Antonina Litvinova et.al., [7] use active replication

techniques for web services, and propose a technique to

gain byzantine fault tolerance using virtualization

technology. Techniques to build efficient and fault

tolerant applications for Amazon’s EC2 are provided in.

Another approach using fault tolerance middleware

which follows a leader/follower replication approach to

tolerate crash faults has been proposed in. However, all

these techniques have the limitations and either tolerate

only a specific kind of fault or provide a single method

to resilience.

IV.PROPOSED WORK

 Our proposed model is based upon improving

reliability assessment of virtual machines in cloud

environment and fault tolerance of applications running

on those VM’s. This fault tolerance has to be done on the

basis of the reliability of virtual machines. The proposed

method use two different set of nodes. One is the set of

VM and other is adjudication node such as the main

node (server). The Virtual machine uses acceptance test

for its

 Improving Fault tolerance in Virtual Machine Based Cloud Infrastructure

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2165

Figure-1: Proposed System Model

logical validity. The adjudicator node contains the time

checker, reliability assessor and decision mechanism

algorithms to find the reliable VM. The reliable VM is

identified to process the client request. The client can

accept the data from the VM in compressed form. A

virtual machine is selected for computation on basis of

maximum and minimum reliability. The node with

maximum reliability is selected as the system event

output. To provide the fault tolerance the data can be

stored on multiple cloud using virtualization techniques.

ACCEPTANCE TEST (AT): Acceptance Test (AT)

module checks whether the fault will occur or not. Here

the fault is a failure of VM or Host. The acceptance test

can respond both success and failure case of the VM. If

the VM has failed that VM is not considered. Even when

the data within a VM gets corrupted it will not affect

VM function so this VM considered by the TC. If result

is success then it passes result to TC module. If the result

is failure then it does not pass the result to TC module.

To indicate the failure of result, AT sends a verify

exception signal to TC.

TIME CHECKER (TC): Time checker is evaluated in

milliseconds. The time is given as a lower bound time

limit and the upper bound time limit. In our process the

response time limit for each VM is given milliseconds. It

must be monitored for every milliseconds. The VM can

respond within the specified time limit, and that VM is

taken as reliable then passed to RA (Reliability

Assessor) module .TC module raises the signal of

overtime which produce the result in deadline time. If all

the nodes fail then TC module performs the recovery.

RELIABILITY ASSESSOR (RA): The RA module

assesses the reliability for each virtual machine. The

reliability is identified based on the main core module of

the proposed system. As the proposed system tolerates

the faults and makes the decision on the basis of the

reliability of the processing nodes (i.e. virtual machine),

the reliability of the virtual machine is improved, which

changes after every computing cycle. In the beginning

the reliability of each virtual machine is 100%. If a

processing node manages to produce a correct result

within the time limit, its reliability increases using a

reliability Factor (RF), and if the processing node fails to

produce the correct result or result within the time limit,

its reliability decreases using adaptability factor n. The

reliability assessment algorithm is more convergent

towards failure conditions. In RA, the VM which

responds above the time limit, is considered as failure

VM.

Begin

Initially rel:=1, n :=1

Input from configuration RF, maxRel,

minRel

Input nodestatus

if nodeStatus =Pass then

rel := rel + (rel * RF)

if n > 1 then

n := n-1;

else if nodeStatus = Fail then

reliability := reliability – (rel * RF * n)

n := n+1;

if reliability >= maxRel then

reliability := maxRel

if reliability < minRel then

nodeStatus :=dead

call_proc: remove_this_node

call_proc: add_new_node

End

Algorithm-1: Reliability Assessment

DECISION MECHANISM (DM): Identify the Reliable

virtual machine based on Resource availability and

previous history.

 Improving Fault tolerance in Virtual Machine Based Cloud Infrastructure

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2166

Resource Availability: Memory is considered as

resource. The memory availability for each VM is

considered separately. We apply the memory availability

algorithm to find the lowest memory utilization VM and

take that VM as reliable.

Previous History: It is a repository area to hold the

checkpoints. At the end of each computing cycle DM

makes checkpoint in it. In case of all node failure,

backward recovery is performed with the help of

checkpoints maintained in this Previous History. In our

experiment we have done the communication induced

checkpoint (CIC). The CIC perform the check pointing

at the end of every cycle to maintain a global state. This

scheme provides an automatic forward recovery. If a

node fail to produce output or produce output after time

overrun the system will not fail. It will continue to

operate with remaining nodes. This mechanism will

produce output until all the nodes fail.

Begin

Initially rel:=1, n :=1

Input from RA nodeRel, numCandNodes

Input from configuration SRL

bestRel := find_reliability of node with highest

reliability

if bestRel >= SRL

status := success

else

perform_backward_recovery

call_proc: remove_node_minRel

call_proc: add_new_node

End

Algorithm-2: Decision Mechanism

The reliability assessment algorithm is executed for each

node (virtual machine). Initially reliability of a VM is set

to 1. There is an adaptability factor n, which controls the

adaptability of reliability assessment. The value of n is

always greater than 0. The algorithm takes input of three

factors RF (Reliability Factor), minReliability

(Minimum Reliability) and maxReliability (Maximum

Reliability). RF is a reliability factor which increases or

decreases the reliability of the node. It decreases the

reliability of the node more quickly as compare to the

increase in reliability. It happen due to its multiplication

with the adaptability factor n. minReliability is the

minimum reliability level. If a node reaches to this mi-

nReliability level, it is stopped to move further opera-

tions. maxReliability is the maximum reliability level. It

is really important in a situation, where a initially

produces correct results in consecutive cycles, but then

fails again and again. So its reliability should not be high

enough to make the reliability difficult to decrease and

converge towards lower reliability. The algorithm is

normally more convergent to failures in near preceding.

So if there are two nodes and both of them have 10

passes and 10 failures in total 20 cycles. But the node,

who have more failures in near past has more chances to

have lesser reliability than the other. This factor is

really in accordance to latency issues, where in-

itially node latency was good, but then it becomes

high. So this node tends to more node failures by failing

to produce the results in time. The values of variables

(RF, minReliability, maxReliability, SRL) depend on

the applications.

V.EXPERIMENTAL SETUP

 We simulated our experiment using CloudSim.

CloudSim [30] is a Cloud computing modeling and

simulation tool that was developed in the University

of Melbourne, Australia. It aims to provide

Cloud computing re-searchers with a comprehensive

experimental tool to conduct new research approaches. It

supports the modeling and simulation of large scale

Cloud computing environments, including power

management, performance, data centers, computing

nodes, resource provisioning, and virtual machine

provisioning. We take 12 Virtual Machine in this

experiment. The virtual machines are configured as

follows:

TABLE-1: VM CONFIGURATION

PARAMETER VALUE

Architecture X86

OS LINUX

VMM XEN

Cost 3.0

Costpermem 0.05

Costperstorage 0.001

Costperbw 0.0

TABLE-2: HOST CONFIGURATION

PARAMETER VALUE

RAM 10000

STORAGE 1000000

BW 100000

TABLE-3: DATACENTER CONFIGURATION

PARAMETER VALUE

Architecture X86

OS Linux

Storage Cost $/s 0.1

Data Transfer Cost $/Gb 0.1

Physical HW units 2

The adjudication node sends data to VM’s and receiving

the results from the VM’s. The response time for the VM

is taken from lower limit 1 to upper limit 1.5

milliseconds. All Virtual Machines execute the

algorithm simultaneously.

VII.RESULT

 A metric analysis is given for the reliability

assessment impact analysis. Here we have analyzed the

reliability improved for Virtual Machine. We have

assumed that the value of reliability factor (RF) is 2%

(i.e. 0.02). Initially, the reliability is 1. Comparison is

made between host and virtual Machine. This

 Improving Fault tolerance in Virtual Machine Based Cloud Infrastructure

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2167

comparison is done for 15 Cloudlets 12 Virtual Machine

and 12 Host.

Figure-2: Comparison of VM and Host

 In the Figure-2 a comparison for a virtual machine

and Host is provided.

VI.CONCLUSION & FUTURE WORK

 The proposed model is a good option to be used as

a fault tolerance mechanism for real time computing on

cloud infrastructure. It has all the advantages of forward

recovery mechanism. It has a dynamic behavior of

reliability configuration. The scheme is highly fault

tolerant. The reason behind improve the reliability is that

the scheme can take advantage of dynamic scalability of

cloud infrastructure. This system takes the full advantage

of using diverse software. In this experiment, we have

used three virtual machines. It utilizes all of three virtual

machines in parallel. This scheme has incorporated the

concept of fault tolerance on the basis of VM algorithm

reliability. Decision mechanism shows convergence

towards the result of the algorithm which has highest

reliability. Probability of failure is very less in our

devised scheme. This scheme works for forward

recovery until all the nodes fail to produce the result.

The system change the reliability by providing the

backward recovery at two levels. First backward

recovery point is Time Checker. Here if all the nodes fail

to produce the result, it performs backward recovery.

Second backward recovery point is Decision mechanism.

It performs the backward recovery if the node with best

reliability could not achieve the System Reliability Level

(SRL). There is another big advantage of this scheme. It

does not suffer from domino effect as check pointing is

made in the end when all the nodes have produced the

result. The reliable VM identification technique used in

this process is very efficient to improve the QOS of

cloud. In future some enhancements to this model has to

he done so that our system could be more fault-tolerant.

REFERENCES

[1] ―Fault Tolerance- Challenges, Techniques and Implementation in

Cloud Computing‖ Anju Bala, Inderveer Chana.

[2] X. Kong, J. Huang, C. Lin, P. D. Ungsunan, ― Performance,

Fault-tolerance and Scalability Analysis of Virtual Infrastructure
Management System‖, 2009 IEEE International Symposium on

Parallel and Distributed Processing with Applications, Chengdu,
China, August 9-12, 2009

 [3] Z. Dai, F. Viale, X. Chi, D. Caromel, Z. Lu, ―A Task-Based

Fault-Tolerance Mechanism to Hierarchical Master/Worker with
Divisible Tasks‖, 2009 11th IEEE International Conference on High

Performance Computing and Communication, Seoul Korea, June 25-27

2009
[4] D. Caromel, C. Delbe, A. D. Costanzo, Peer-to-Peer and

fault-tolerance: Towards deployment-based technical

Services, Vol 23, No. 7, August 2007, pp. 879-887
[5] X. Kong, J. Huang, C. Lin, ―Comprehensive Analysis of

Performance, Fault-tolerance and Scalability in Grid Resource

Management System‖, 2009 Eighth International Conference on Grid
and Cooperative Computing, Lanzhou, China, August 27-29, 2009

[6] J .Coenen, J. Hooman, ―A Formal Approach to Fault Tolerance in

Distributed Real-Time Systems‖, Department of Mathematics and
Computing Science, Eindhoven University of Technology, Nether land

[7]Antonina Litvinova, Christian Engelmann and Stephen L. Scott,‖ A

Proactive Fault Tolerance Framework for High Performance
Computing‖, 2009.

[8]Golam Moktader Nayeem, Mohammad Jahangir Alam,‖ Analysis of

Different Software Fault Tolerance Techniques‖, 2006.

[9]Steven Y. Ko, Imranul Hoque, Brian Cho and Indranil Gupta, ―On

Availability of Intermediate Data in Cloud Computations‖, 2010.
[10]Elvin Sindrilaru,,Alexandru Costan,, Valentin Cristea,‖ Fault

Tolerance and Recovery in Grid Workflow Management Systems‖,

2010 International Conference on Complex, Intelligent and Software
Intensive Systems.

[11] M.Armbrust, A.Fox, R. Griffit,et al., ―A view of cloud

computing‖, Communications of the ACM, vol. 53, no. 4, pp. 50–58,
2010.

[12] Webbing Zhao et. al. ―Fault Tolerance Middleware for cloud

computing.‖ Third International Conference on Cloud Computing
(2010): 67-74.

[13] Tchana Alain et. al. ―Fault Tolerant Approaches in Cloud

Computing Infrastructures.‖ The Eight International Conference on
Autonomic and Autonomous Systems (2012): 42-48.

[14] Slawinska, Magdalena, Jaroslaw Slawinski, and Vaidy Sunderam.

―Unibus: Aspects of heterogeneity and fault tolerance in cloud
computing.‖ 2010 IEEE International Symposium on Parallel

Distributed Processing Workshops and Phd Forum IPDPSW 2 (2010):

1-10.
[15] H. Chen, G. Jiang, and K. Yoshihira. ―Failure detection in

large-scale internet services by principal subspace mapping.‖ IEEE

Trans. on Knowledge and Data Engineering, (2007).
[16] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer.

Failure diagnosis using decision trees. Autonomic Computing,

International Conference on Autonomic Computing (ICAC), (2004)
[17] O. S. Unsal, I. Koren, M. Krishna, ―Towards Energy-Aware

Software Based Fault Tolerance in Real Time Systems‖ISLPED ’02,

Monterey, California, USA, August 12-14, 2002,
[18] S. Malik, M. J. Rehman, ―Time Stamped Fault Tolerance in

Distributed Real Time Systems‖; IEEE International Multitopic

Conference, Karachi, Pakistan, 2005
[19] L. L. Pullum, ―Software Fault Tolerance and Implementation‖

Artech House, Boston, London, United Kingdom, 2001

[20] K. H. Kim, ―Structuring DRB Computing Stations in Highly
Decentralized Systems,: Proceedings International Symposium on

Autonomous Decentralized Systems, Kawasaki, 1993, pp. 305-314

[21]L. M. Vaquero, L. Rodero-Merino, J. Caceres and M. Lindner, ―A
break in the clouds: towards a cloud definition,‖ SIGCOMM Computer

Communication Review,vol. 39, pp. 50–55, December 2008.

[22]R.Buyya, S.Pandey and C.Vecchiola, ―Cloudbus toolkit for
market-oriented cloud computing‖, In Proceeding of the 1st

International Conference on Cloud Computing (CloudCom2009),

Beijing, China, December 2009.
[23]S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D.

Keromytis, ―ASSURE: Automatic Software Self-healing Using REs-

cue points‖, Proceedings of the 14th International Conference on
Architectural Support for Programming Languages and Operating

Systems (ASPLOS’09), ACM Press, March 7-11, 2009, Washington,

DC, USA, pp.37-48.
[24]B. Buck and J. K. Hollingsworth, ―An API For Runtime Code

Patching‖, International Journal of High Performance Computing Ap-

plications, Vol.14, No.4, November 2000, pp.317-329.
[25]S. Osman, D. Subhraveti, G. Su, and J. Nieh, ―The Design and

Implementation of Zap: A System For Migrating Computing

 Improving Fault tolerance in Virtual Machine Based Cloud Infrastructure

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 2168

Environments‖, Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI’02), USENIX Association,

December 9-11, 2002, Boston, Massachusetts, USA, pp.361-376.

[26]Gang Chen, Hai Jin, Deqing Zou, Bing Bing Zhou, Weizhong
Qiang, Gang Hu, ―SHelp: Automatic Selfhealing for Multiple

Application Instances in a Virtual Machine Environment‖, IEEE

International Conferenceon Cluster Computing, 2010.
[27] K. H. Kim, ―Towards Integration of Major Design Techniques for

Real-Time Fault-Tolerant Computer System‖, Society for Design &

Process Science, USA, 2002
[28] K. H. Kim, ―Distributed Execution of Recovery Blocks: An

Approach to Uniform Treatment of Hardware & Software faults.‖

Proceeding fourth International Conference on Distributed Computing
Systems, 1984, pp. 526-532

[29] D. Caromel, C. Delbe, A. D. Costanzo, M. Leyton, ProActive: An

Integrated Platform for Programming and Running Applications on
Grids and P2P Systems, Computational Methods in Science and

Technology 12(1), pp 69-77, 2006

[30] R. Buyya, R. Ranjan, and R. N. Calheiros, ―Modeling And
Simulation Of Scalable Cloud Computing Environments And The

Cloudsim Toolkit: Challenges And Opportunities,‖ Proc. Of The 7th

High Performance Computing And Simulation Conference (HPCS 09),

IEEE Computer Society, June 2009.

	OLE_LINK21

