
Volume 2, No. 6, June 2011

Journal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer ScienceJournal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 113

IMPROVING QUALITY USING TESTING STRATEGIES

Sahil Batra
*1

, Dr. Rahul Rishi
2

* 1Department of Computer Science and Engineering

The Technological Institute of Textile and Science, Bhiwani-127021, Haryana – India

sahil.batra23@gmail.com
2Department of Computer Science and Engineering

The Technological Institute of Textile and Science, Bhiwani-127021, Haryana – India

rahulrishi@rediffmail.com

Abstract: Software testing is a technique aimed at evaluating an attribute or capability/usability of a program or product/system and determining

that it meets its quality. Although crucial to software quality and widely deployed by programmer & testers, software testing still remains an art,

due to limited understanding of the principles of software. Software testing is an important technique for assessing the quality of a software

product. In this paper, various types of software testing technique and various attributes of software quality are explained. Identifying the types

of testing that can be applied for checking a particular quality attribute is the aim of this thesis report. All types of testing can not be applied in

all phases of software development life cycle. Which testing types are applicable in which phases of life cycle of software development is also

summarized.

Keywords: SDLC, Testing, Quality, Efficiency, Software.

INTRODUCTION

Software testing is both a discipline and a process. It is a

separate discipline from software development. Software

development is the process of coding functionality to meet

defined end-user needs. While Software testing tends to be

considered a part of development, it is really its own

discipline and should be tracked as its own project. Software

testing, while working very closely with development,

should be independent enough to be able to hold-up or slow

product delivery if quality objectives are not met. The

objective of software testing is to find problems and fix

them to improve quality. Software testing typically

represents 40% of a software development budget. There are

four main objectives of testing:

Demonstration:

It show that the system can be used with acceptable risk,

demonstrate functions under special conditions and show

that products are ready for integration or use.

Detection:

It discovers defects, errors, and deficiencies. Determine

system capabilities and limitations quality of components,

work products, and the system.[1,4]

Prevention:

It provides information to prevent or reduce the number of

errors clarify system specifications and performance.

Identify ways to avoid risks and problems in the future.

Improving quality:

By doing effective testing, we can minimize errors and

hence improve the quality of software.

NEED FOR TESTING

Well, while making food, it’s ok to have something extra,

people might understand and eat the things we made and

may well appreciate our work. But this isn't the case with

software project development.[2,8,6] If we fail to deliver a

reliable, good and problem free software solution, we fail in

our project and probably we may loose our client. So in

order to make it sure, that we provide our client a proper

software solution, we go for testing. We check out if there is

any problem, any error in the system, which can make

software unusable by the client. We make software testers

test the system and help in finding out the bugs in the

system to fix them on time.

DIFFERENCE BETWEEN TESTING AND

DEBUGGING

The purpose of debugging is to locate and fix the offending

code responsible for a symptom violating a known

specification. Debugging typically happens during three

activities in software development, and the level of

granularity of the analysis required for locating the defect

differs in these three. The first is during the coding process,

when the programmer translates the design into an

executable code. [8,11].During this process the errors made

by the programmer in writing the code can lead to defects

that need to be quickly detected and fixed before the code

goes to the next stages of development. Most often, the

developer also performs unit testing to expose any defects at

the module or component level. The second place for

debugging is during the later stages of testing, involving

multiple components or a complete system, when

unexpected behavior such as wrong return codes or

abnormal program termination may be found. A certain

amount of debugging of the test execution is necessary to

conclude that the program under test is the cause of the

unexpected behavior.

Sahil Batra et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 114

SOFTWARE QUALITY

Everyone is committed to quality; however, the following

statement shows some of the confusing ideas shared by

many individuals that inhibit achieving a quality

commitment: Quality requires a commitment, particularly

from top management. Close cooperation of management

and staff is required in order to make it happen.

a. Many individuals believe that defect-free products and

services are impossible, and accept certain levels of

defects as normal and acceptable.

b. Quality is frequently associated with cost, meaning that

high quality equals high cost. This is confusion between

quality of design and quality of conformance.

c. Quality demands requirement specifications in enough

detail that the software produced can be quantitatively

considered alongside those requirements. Many

organizations are not capable or willing to expend the

effort to produce specifications at the level of detail

required.

d. Technical personnel often believe that standards stifle

their creativity, and thus do not abide by standards

compliance. However, for quality to happen, well-

defined standards and procedures must be

followed.[4,8,7]

Quality cannot be achieved by assessing an already

completed product. The aim therefore, is to prevent quality

defects or deficiencies in the first place, and to make the

products assessable by quality assurance measures. Some

quality assurance measures include: structuring the

development process with a software development standard

and supporting the development process with methods,

techniques, and tools.

The undetected bugs in the software that caused millions of

losses to business have necessitated the growth of

independent testing, which is performed by a company other

than the developers of the system [8]. In addition to product

assessments, process assessments are essential to a quality

management program. Examples include documentation of

coding standards, prescription and use of standards,

methods, and tools, procedures for data backup, test

methodology, change management, defect documentation,

and reconciliation. Quality management decreases

production costs because the sooner a defect is located and

corrected, the less costly it will be in the long run [7]. With

the advent of automated testing tools, although the initial

investment can be substantial, the long-term result will be

higher-quality products and reduced maintenance costs. The

total cost of effective quality management is the sum of four

component costs: prevention, inspection, internal failure,

and external failure. Prevention costs consist of actions

taken to prevent defects from occurring in the first place.

Inspection costs consist of measuring, evaluating, and

auditing products or services for conformance to standards

and specifications [9]. Internal failure costs are those

incurred in fixing defective products before they are

delivered.

Quality Attributes

Quality can be measured using various quality attributes.

Common ones are discussed here:

Understandability:

The purpose of the software product is clear. This goes

further than just a statement of purpose all of the design and

user documentation must be clearly written so that it is

easily understandable. Obviously, the user context must be

taken into account, e.g. if the software product is to be used

by software engineers it is not required to be understandable

to lay users.[9,10]

Completeness:

All parts of the software product are present and each of its

parts are fully developed. For example, if the code calls a

sub-routine from an external library, the software package

must provide reference to that library and all required

parameters must be passed. All required input data must be

available.

Conciseness:

No excessive information is present. This is important where

memory capacity is limited, and it is important to reduce

lines of code to a minimum. It can be improved by replacing

repeated functionality by one subroutine or function which

achieves that functionality. This quality factor also applies

to documentation.

Portability:

The software product can be easily operated or made to

operate on multiple computer configurations. This can be

between multiple hardware configurations (such as server

hardware and individual computers), multiple operating

systems [7, 8] (e.g. Microsoft Windows and Linux-based

operating systems), or both.

Consistency:

The software contains uniform notation, symbology and

terminology within itself.

Maintainability:

The product should facilitate updating to satisfy new

requirements and software product that is maintainable is

simple, well documented.

Testability:

The software product facilitates the establishment of

acceptance criteria and supports evaluation of its

performance. Such a characteristic must be built-in during

the design phase if the product is to be easily testable, since

a complex design leads to poor testability.

Usability:

The product is convenient and practicable to use. The

component of the software which has most impact on this is

the user interface (UI), which for best usability is usually

graphical.[4,5]

Reliability:

The software can be expected to perform its intended

functions satisfactorily over a period of time. Reliability also

encompasses environmental considerations in that the

product is required to perform correctly in whatever

conditions it is operated in; this is sometimes termed

robustness.

Structure:

The software possesses a definite pattern of organization in

its constituent parts.

Sahil Batra et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 115

Efficiency:

The software product fulfils its purpose without wasting

resources, e.g. memory or CPU cycles.[3]

Security:

The product is able to protect data against unauthorized

access and to withstand malicious interference with its

operations. Besides the presence of appropriate security

mechanisms such as authentication, access control and

encryption, security also implies reliability in the face of

malicious, intelligent and adaptive attackers .

In order to measure quality, we need to analyse

requirements to design test cases, then design the test cases,

document them, implement them and execute these test

cases. Then the results are analysed. Before all this, we need

to plan for testing, including risk analysis and test

management practices. An example is IBM RUP software

tools used by testers to execute a software test plan . This all

includes communication skill for the effective tester.

PROBLEM STATEMENT

The main purpose of software testing is to uncover errors

which are not simply syntax errors in code but various other

types of errors in all the documents produced during the

software development e.g. software requirements document,

design document, test plan etc.[8,6,5] Various types of

software testing techniques have been developed till date,

but which type of testing technique will be suitable and

sufficient for checking a particular document in which phase

of software development life cycle is not yet clear. So here

the problem is to

a. Identify the testing techniques which can be applied at

different levels and phases of software development life

cycles.

b. Identify the testing techniques which can be applied to

measure which software quality attribute.

Proposed Scheme

Application of Testing to Measurement of Quality

Attributes

Different quality attributes need different types of testing to

measure software quality. Various types of testing according

to the quality feature it applies to in the table 1.[4,6,7] In

given table we identified that for a particular software

quality feature which type of software testing technique can

be applied:

Table 1: Testing Strategies for different Quality aspects

Experimental Scenario:

As the figure given above we mention the different type of

Quality aspects and for that which type of Software testing

is needed. Here we are taking the Efficiency aspect for that

we have to perform Performance testing. For the

Performance testing we are performing a scenario with the

help of a WAPT Software.

Sahil Batra et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 116

Figure 1 overall performance

Successful sessions per second

Profile
0:00:00-

0:00:06

0:00:06-

0:00:12

0:00:12-

0:00:18

0:00:18-

0:00:24

0:00:24-

0:00:30

0:00:30-

0:00:36

0:00:36-

0:00:42

0:00:42-

0:00:48

0:00:48-

0:00:54

0:00:54-

0:01:00
Total

Profile1 0 0 0 0 0 0 0 0 0 0 0

Total 0 0 0 0 0 0 0 0 0 0 0

Successful pages per second

Profile
0:00:00-

0:00:06

0:00:06-

0:00:12

0:00:12-

0:00:18

0:00:18-

0:00:24

0:00:24-

0:00:30

0:00:30-

0:00:36

0:00:36-

0:00:42

0:00:42-

0:00:48

0:00:48-

0:00:54

0:00:54-

0:01:00
Total

Profile1 0.50 0 0.17 0.17 0 0 0.67 0.50 0.50 0 0.25

Total 0.50 0 0.17 0.17 0 0 0.67 0.50 0.50 0 0.25

Successful hits per second

Profile
0:00:00-

0:00:06

0:00:06-

0:00:12

0:00:12-

0:00:18

0:00:18-

0:00:24

0:00:24-

0:00:30

0:00:30-

0:00:36

0:00:36-

0:00:42

0:00:42-

0:00:48

0:00:48-

0:00:54

0:00:54-

0:01:00
Total

Profile1 0.83 0 0.17 0.17 0 0 1.33 0.50 0.50 0 0.35

Total 0.83 0 0.17 0.17 0 0 1.33 0.50 0.50 0 0.35

CONCLUSION

Quality is the main focus of any software engineering

project. Without measuring, we cannot be sure of the level

of quality in software. So the methods of measuring the

quality are software testing techniques. This thesis report

relates various types of testing technique that we can apply

in measuring various quality attributes. Also which testing

are related to various phase of SDLC. General SDLC

processes are applied to different type of projects under

different conditions and requirements. There are various

type of SDLC model. But in all these models, testing is

applied after a particular stage and not in all the phases. In

this thesis report, it is concluded that testing should be

applied in all the phases of SDLC and not at a particular

stage. Which type of testing technique can be applied to

which type of SDLC phase is also summarized?

REFERENCES

[1] Jain Deepak, “Software Engineering Principle and

Practices” First edition by Oxford University Press,

ISBN-13: 978-0-19-569484-0, (2009).

[2] Bersoff, E.H. and A.M. Davis, “Impact of Lifecycle

Modes on Software Configuration Management”,

ACM, pp104-108 (1991).

[3] Boris Beizer, “Software testing techniques”, Second

edition, (1990).

Sahil Batra et al, Journal of Global Research in Computer Science, Volume 2 Issue (6), June 2011,

© JGRCS 2010, All Rights Reserved 117

[4] Chilarege, Ram, “Software Testing Best Practises”

Center for Software Engineering, IBM Research (1999).

[5] Joe W. Duran, Semeon, C. Ntafos, “An Evaluation of

Random Testing ”, IEEE Transactions on Software

engineering,Vol.SE-10,No.4, pp438-443 (July 1984).

[6] Beizer, Boris, “Black-Box Testing Technique for

Functional Testing of Software and System” New York

Wiley, ISBN: 0471120944 Physical description: xxv,

194 p. ill.; 23cm (1995).

[7] Barber, Scott “Software Testing: An Introduction”,

PerfTestPlus (2006).

[8] Cem Karner, “Testing Computer Software”, (1993).

[9] IEEE “Standard Glossary of Software Engineering

Terminology” (IEEE Std 610.12-1990), IEEE

Computer society, (dec.10, 1990).

[10] Ballista COTS “Software Robustness Testing Harness”

(1999).

[11] Kropp, N P Koopman, P J Siewiorek D P “Automated

Robustness Testing of the-Shelf Software Component”

28th Annual International Symposium on Fault-

Tolerant Computing (1995).’

