

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol.2, Special Issue 4, September 2014

Copyright to IJIRCCE www.ijircce.com 254

Improving the Performance of Condor for Dag-
Based Tasks through Cache Memory in Grid

Environments

1N. Purandhar, 2N.Usharani
1Department of Computer Science and Engineering, Sri Venkateswara University, Tirupati, India

2Assistant Professor, Department of Computer Science and Engineering, Sri Venkateswara University. Tirupati, India

ABSTRACT: Grid application consists of one or more tasks. These tasks are generally divided into two types such as
Independent task and Workflow tasks. A number of resource brokers that act as middleware such as Condor, Nimrod-G etc
are used in grid based application. Since, workflow tasks are not easily executed with these architecture, we slightly
modified the DAG-Condor architecture to suit workflow tasks. This paper focuses on cache management system in DAG-
Condor resource broker. By adding cache to store intermediate results and these results also stored in central database
which contains old results. The overhead of read and writes to central database is reduced. It improves the performance,
throughput of the system.

KEY WORDS: Grid Computing, Condor, Caching, Nimrod-G, Cluster, DAG, Workflow.

I. INTRODUCTION

 Grid computing [1] is the current hot topic in Information Technology field. Lot of research is going for efficient
utilization of grid. Most of the applications require high processing speed, lot of CPU time and memory.

 Scheduling is the central part of grid computing [1]. It can be performed as simply as taking the next available
resource, but often this task involves prioritizing job queues, managing the load, finding the workarounds when
encountering reserved resources and monitoring progress. Job schedulers are able to submit, control and monitor the
workload of jobs submitted in a network of computers.

 Grid broker mediates access to distributed resources by (a) discovering suitable data sources for a given analysis
scenario, (b) suitable computational resources, (c) optimally mapping analysis jobs to resources, (d) deploying and
monitoring job execution on selected resources, and (e) accessing data from local or remote data source during job
execution. A resource broker in a data grid must have the capability to locate and retrieve the required data from multiple
data sources and to redirect the output to storage where it can be retrieved by processes downstream. It must also have the
ability to select the best data repositories from multiple sites based on availability of files and quality of data transfer.

 Most of the applications that use a grid have Workflow tasks. To utilize the grid for workflow tasks we have many
schedulers and resource brokers like Condor and Nimrod-G. But those are not efficient for workflow tasks for instance
DAG-Condor scheduler frequently queries the database for the intermediate results and the number of queries and the size
of database results in extra overhead. The performance of system depends on other factors such as the numbers of machines
in the cluster and the workload. This creates problems like congestion, and degradation of throughput and performance. To
overcome the above problem we proposed architecture by adding cache to store intermediate results and these results also
stored in central database which contains old results. To increase the efficiency and performance we have proposed cache

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol.2, Special Issue 4, September 2014

Copyright to IJIRCCE www.ijircce.com 255

management system in DAG-Condor resource broker.

II. RELATED WORK

 A Workflow is a collection of Steps and data that define the paths that can be taken to complete a task. Workflows
may contain activities such as displaying content to users, collecting information from users or computer systems,
performing calculations, and sending messages to external computer systems. To maintain the workflow jobs we have
collection of resource brokers such as Nimrod-G, Condor-G, AppLeS, Gridbus Broker, Globus.

 The Nimrod-G [2] is a Grid resource broker that allows managing and steering task farming applications on
computational Grids. It uses an economic model for resource management and scheduling. Nimrod-G provides resource
discovery, resource trading, scheduling, resource staging on Grid nodes, result gathering, and final presentation to the user.
Nimrod-G usesGRid Architecture for Computational Economy (GRACE) services to dynamically trade with resource
owner agents to select appropriate resources. It follows the hierarchical and computational market model in resource
management. It uses the services of Grid middleware systems such as Globus and Legion for resource discovery and uses
either a network directory or object model based data organization. Nimrod/G is a resource management system with a
focus on computational economy and schedules tasks based on their deadlines and budgets. Nimrod/G also addresses issues
of scheduling single jobs, and does not address the requirements of workflow applications.

 The Condor is a Meta computing system that uses computer idle time to run jobs in a network. Given the
computing resources of an institution, Condor seeks to maximize job throughput, without disturbing human interaction. The
Condor environment follows a layered architecture and offers powerful and flexible resource management services for
sequential and parallel applications. The Condor has been extended to support submission of jobs to resources Grid-enabled
using Globus services. The matchmaker is responsible for initiating contact between compatible agents.

 The Condor-G [6] is the job management part of Condor. Condor-G helps us to submit jobs into a queue, have a
log detailing the life cycle of our jobs, manage all input and output files, along with everything else you expect from a job
queuing system. Condor-G gets its name from how it talks to the resource management part. Condor-G uses the Globus
Toolkit(tm) to start the job on the remote machine. Condor-G provides a "window to the Grid" for users to both access
resources and manage jobs running on remote resources. Condor-G is used to look across the Grid and see instantly how
the jobs are doing.

 The database is resident at the server and transactions are initiated from client sites, with the server providing
facilities for shared data access. Dynamic local Caching of query results at client sites can enhance the overall performance
of such a system, especially when the operational data spaces of clients are mostly disjoint. In effect, such caching of
locally pertinent and frequently used data constitutes a form of dynamic data replication, whereby each client dynamically
defines its own data space of interest. This concept is utilized in this proposed system.

III. WORKFLOW TASK

 A workflow (fig.1) is composed of connected multiple scientific tasks according to their dependencies. Workflow
[11] structure indicates the temporal relationship between the tasks. In general, a workflow can be represented as a Directed
Acyclic Graph (DAG)[9,10] or a non-DAG.
 An acyclic digraph is a directed graph containing no directed cycles, also known as a directed acyclic graph or a
"DAG." A workflow language is a particular XML notation representing the inter-task dependencies.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol.2, Special Issue 4, September 2014

Copyright to IJIRCCE www.ijircce.com 256

Fig.1 Workflow structure

 In DAG-based workflow, workflow structure can be categorized into three types such as sequence, parallelism,
and choice. Sequence is defined as an ordered series of tasks, with one task starting after a previous task has completed.
Parallelism represents tasks which are performed concurrently, rather than serially. In choice structured workflows, a task is
selected to execute at run-time when its associated conditions are true. In addition to all structures contained in a DAG-
based, a non-DAG workflow also includes iteration structure, in which sections of workflow tasks in an iteration block are
allowed to be repeated.

3.1 Nature of scientific workflows: In workflow, DAG (Directed Acyclic Graph) [11] refers to a set of programs with
dependencies between them i.e the input of some programs may depend on the output of others. This places partial
constraints on the order of execution of programs. Consider the “diamond” DAG shown in Figure 2. Since
programs B and C depend on the output of program A, they can be run only after A completes, but B and C
themselves can be run in any order or even in parallel.

 A typical scientific workflow frequently consists of a number of such DAGs with identical structures. These
DAGs may share some common (global) input data. Scientific workflows are characterized by the different types of I/O
performed by jobs in their lifetime. Pipeline I/O refers to the data flow that occurs between parent and child programs
within a particular DAG. The term batch I/O refers to input files that are common across all DAGs in a workflow. In Figure
2 files ‘File1’ and ‘File2’ are pipeline files. ‘FileInput’ is a batch input to the DAGs in the example workflow shown in
Figure 3. Batch input can occur at any level in a DAG.

 Fig.2 A Diamond DAG Fig.3 Workflow from Diamond DAGs

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol.2, Special Issue 4, September 2014

Copyright to IJIRCCE www.ijircce.com 257

IV. JOBS EXECUTION IN CONDOR

 Condor runs on a heterogeneous set of computers, the Condor pool. Each computer executes two daemons, the job
scheduler daemon (Schedd) and the starter daemon (Startd), which launches new jobs.

 In Condor, users create submit files for jobs to be executed. The submit file specifies details about the job such as
the names of the executable, input and output files, and environment variables that need to be set at the time of job
execution. In addition to that a user may also specify requirements and rank attributes. The requirements attribute places
constraints on the machines that can run the job. Rank is used to specify an order of preference for machines that meet the
job’s requirements. A job is submitted by specifying a submit file to the condor_ submit tool. The submit file is converted
into a “classad”, which is a list of attribute-value pairs. Machines also advertise their resources using classads and can place
constraints on the jobs they wish to run. In the matchmaking process each user is allotted some number of the machines in
the pool based on a fair-share scheme [8]. Jobs that are selected for scheduling are first sorted in order of user priority. For
each job, the list of available machines is scanned and the machine with the highest rank that satisfies the job’s
requirements is chosen for execution.(This machine is called the execute machine). The matchmaking process is done
periodically (typically, every five minutes).

 The condor_submit tool only accepts jobs consisting of a single program. Workflows consisting of DAGs are
submitted using a different tool called condor_submit_dag. This tool allows users to specify parent-child dependencies
between jobs. When a workflow is submitted, the Condor DAGMan daemon is spawned, and the top-level jobs in the
workflow (jobs marked ‘A’ in Figure 3) are submitted using condor_submit. DAGMan continuously monitors the logs
produced by Condor on the submit machine (the machine to which the user submits jobs) and uses condo_ submit to submit
a child job once its parents have completed execution. So the Condor matchmaker itself has no notion of workflows and
cannot consider a job for scheduling until it is ready for execution.

Before a job begins, it’s input and executable files are transferred from the submit machine to the execute machine. After
a job has completed, the output files associated with that job are transferred back to the submit machine and deleted from the
execute machine. When a child job is scheduled, files are again transferred from the submit machine to an execute machine
(which could possibly be the same one that executed the parent job). This job scheduling and file transfer system is inefficient
since the data dependencies within and across DAGs in a workflow are ignored. The main disadvantages are listed below;

 All jobs has to be submitted through submit machine only
 All the client machines send and receive intermediate results through central Database
 Congestion is high in condor
 Performance degrades as the number of tasks increases
 Data or internal results are not used in future
 It reduces throughput and increase the execution time.

V. PROPOSED CACHE MANAG-EMENT SYSTEM IN DAG-CONDOR

 The Condor architecture has a database which is connected to submit machine, so all the jobs will be submitted
through the submit machine only. To over come this problem we propose the new DAG-Condor Architecture (fig.5) in
which the central database is connected to both submit and execute machine. Here we can submit any job from any part of
the grid either through submit machine or execute machine.

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol.2, Special Issue 4, September 2014

Copyright to IJIRCCE www.ijircce.com 258

Fig.5 Stage 1 proposed DAG-Condor architecture

 Previously in the DAG-Condor architecture, due to the presence of a central database the overhead of accessing
the database increase as and when intermediate results are generated. It increases the read and writes overhead. This in turns
reduces the performance of the system. Due to the increase of read and write operations it also increases the congestion,
cost of operation and increases the loss of data. To reduce the loss of data retransmission of data will increase. To reduce
the overhead of read and write operations we include the high storage cache which is connected to all the execute machine
clusters in the proposed system. In the cluster, we use hierarchy cache management which stores all the internal results of
machines connected in cluster. These results are stored in cache as well as in central Database.
 If any cluster require the results of workflow jobs which are executed in another cluster it will be accessed either
from cache or central database based on the distance between the cache and central database. The distance between the
systems will be calculated using Link-State algorithm [16] which is explained below.

Fig.6 Cache management in Proposed DAG-Condor Architecture

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol.2, Special Issue 4, September 2014

Copyright to IJIRCCE www.ijircce.com 259

 Suppose we have four clusters A, B, C, D and central database CD in grid system. Figure 7 shows that the system
is connected between the clusters as follows (A,B), (B,C), (B,D), (C,D), (A,CD),(D,CD) with distance 3,1,5,1,2,1
respectively. Let job x be executed at cluster D, the result is stored in cache and central database. An execute machine in
cluster B requires the result of job x which is stored in central database and cache at cluster D. The question is that, from
which memory it has to access the results .By using the Link–state Algorithm it finds that, access from cache memory at
cluster D is between B, D is Shorter than B to CD

Fig.7 overall structure of system

V. EMPIRICAL RESULTS

 We have simulated the architecture in java which gives good results .It gives good performance when compared to
the previous architecture of Condor. Here the execution time is reduced compare to previous one, by reducing the read
operation from the central database. It gives High performance and reduces the congestion due to cache management. We
calculated the performance based on page faults. It reduces the number of page faults thus increases the performance of the
system.
 In the below, the graph results are based on the probability of read operation if the probability of read operations
increases the page faults increases. This system is performs better when there are less read operations to the central
database.

Number of Page
faults

Prob. Of read
operation

54 0.2
58 0.4
48 0.5
58 0.6
59 0.8
60 0.9
80 1

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol.2, Special Issue 4, September 2014

Copyright to IJIRCCE www.ijircce.com 260

Fig.8. Page faults Vs Read operations

VI. CONCLUSION AND FUTURE WORK

 In this paper we introduce the cache management system in DAG-Condor architecture. This makes the easy
transmission of data throughout the system. A major advantage is associative access to the contents of a cache, allowing
effective reuse of cached information. Increased autonomy at client sites, less network traffic, and better scalability are a
few other expected benefits.

 Apart from the planned performance studies, many other important issues remain unexplored in this paper. We
currently work on the architecture of cache management in DAG-Condor. The future implementation questions in cache are
to derive suitable predicate-indexing techniques, optimization strategies, performance tuning, local index creation, and
effective management of space by a client.

REFERENCES

 1. I. Foster and C. Kesselman (editors), The Grid: Blueprint for a Future Computing Infrastructure, Morgan Kaufmann Publishers, USA, 1999.
2. D. Abramson, J. Giddy, and L. Kotler, High Performance Parametric Modeling with Nimrod/G: Killer Application for the Global Grid?,
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS 2000), May 1-5, 2000, Cancun, Mexico, IEEE CS Press, USA,
2000.
3. Ncbi blast. http://www.ncbi.nlm.nih.gov/BLAST/.
4. Condor services for the Global Grid : Interoperability between Condor and OGSA
5. Litzkow, M., Livny, M., and Mutka, M., “Condor – A Hunter of Idle Workstations”, Proc. 8th Intl Conf. on Distributed Computing Systems, 1988,
pp. 104-111.
6. Condor-G: A Computation Management Agent for Multi-Institutional Grids
James Frey, Todd Tannenbaum, Miron Livny Ian Foster, Steven Tuecke
7. http://www.cs.wisc.edu/condor/manual/
8. Condor fair share scheduling. http://www.cs.wisc.edu/condor/manual/v6.7/ 3 5User Priorities.html.
9. J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy. Resource Allocation Strategies for Workflows in Grids In IEEE
International Symposium on Cluster Computing and the Grid (CCGrid 2005).
10. A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-Crummey, B. Liu and L. Johnsson. Scheduling Strategies for Mapping Application
Workflows onto the Grid. In IEEE International Symposium on High Performance Distributed Computing (HPDC 2005),2005.
11. Data Driven Workflow Planning in Cluster Management Systems HPDC’07, June 25–29, 2009, Monterey, California, USA.Copyright 2009
12. A predicate-based caching scheme for client-server database architectures Arthur M. Keller1 and Julie Basu2;3
13. Kamel N, King R (1992) intelligent database caching through the use of page-answers and page-traces. ACM Trans Database Syst 17:601–646
14. Wang Y, Rowe LA (1991) Cache consistency and concurrency control in a client-server DBMS architecture. Proceedings of the ACMSIGMOD
International Conference on Management of Data, Denver,Colo, May
15. Run-time Adaptive Cache Hierarchy Management via Reference Analysis

probability of read vs Pagefaults

0

10

20

30

40

50

60

70

80

90

P r ob. R ead

Ser i es1

Ser i es2

Ser ies1 54 58 48 58 59 60 80

Ser ies2 0.2 0.4 0.5 0.6 0.8 0.9 1

1 2 3 4 5 6 7

 ISSN(Online): 2320-9801
 ISSN (Print): 2320-9798

International Journal of Innovative Research in Computer

and Communication Engineering
(An ISO 3297: 2007 Certified Organization)

Vol.2, Special Issue 4, September 2014

Copyright to IJIRCCE www.ijircce.com 261

Teresa L. Johnson Wen-mei W. Hwu, ISCA ‘97 Denver, CO, USA 0 1997 ACM 0-89791-901-7/97/0006
16. Link-State Routing with Hop-by-Hop Forwarding Can Achieve Optimal Traffic Engineering. Dahai Xu∗ AT&T Labs – Research ,Mung Chiang
Dept. of EE, Princeton University, Jennifer Rexford Dept. of CS, Princeton University
17. Secure Link State Routing for Mobile Ad Hoc Networks
Panagiotis Papadimitratos, School of Electrical and Computer Engineering
Cornell University, Ithaca NY 14853, Zygmunt J. HaasSchool of Electrical and Computer Engineering Cornell University, Ithaca NY 14853

