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ABSTRACT: The present article deals with the gravity field and the laser pulse on porous thermoelastic solid under 
the effect of the temperature dependent properties in the context of the Green-Naghdi theory. The normal mode method 
used to obtain the exact solution of the considered physical quantities which have been shown graphically in the 
presence and the absence of the physical operators used in the problem.  
 
KEYWORDS: Gravity, Green-Naghdi, Laser pulse, Normal mode, Porous, Temperature dependence, 
Thermoelasticity. 
 

I. INTRODUCTION 
 

 In the classical thermoelasticity (C-D) theory due to Biot [1], the equation of the heat conduction is a parabolic 
type. It could predict the infinite speed of the heat propagation in elastic media, but it was inconsistent with 
experimental observation. With this motivation, Lord and Shulman [2], and Green and Lindsay [3], established the (L-S) 
and (G-L) generalized thermoelasticity theories respectively. In the (L-S) theory, a relaxation time parameter 
introduced into the Fourier heat conduction equation, with the heat flux and its time derivative taken into account. The 
heat equation associated with this theory is essentially of a hyperbolic type. In the (G-L) theory, the constitutive 
equations were modified by introducing two relaxation time parameters. Both the equations of motion and heat 
conduction are of the hyperbolic type. The two theories can better characterize thermal disturbances with limited speed 
of the wave propagation and exhibit the so-called second sound effect in solids. Later, Green and Naghdi [4-6] 
established a new generalized thermoelasticity theory (G-N) theory of three types based on the energy and entropy 
balances, in which the energy dissipation was not considered in the previous theories. The linearized form of type I was 
equivalent to the classical thermoelasticity (C-D) theory. Type II describes the thermoelastic system without energy 
dissipation, while type III permits the dissipation of the energy. Therefore, the (G-N) theory is an ideal thermoelasticity 
theory. Ailawalia et al. [7] studied the effect of initial stress and rotation in (G-N) theory of type III. Othman et al. [8, 9] 
investigated the effect of rotation, the gravity and temperature dependent properties of porous thermoelastic solid with 
(G-N) theory. There are a number of theories about the mechanical properties of the porous materials. The concept of a 
distributed body introduced by Goodman and Cowin [10] in the context of granular and porous materials asserts that 
the mass density has the decomposition *   where * is the density of the matrix material and   is the volume 
fraction filed. This representation introduces an additional degree of kinematic freedom. Nunziato and Cowin [11] used 
this concept to present a non-linear theory to describe the properties of homogeneous elastic materials with voids free 
of fluid. Moreover, the theory of Cowin and Nunziato a more appropriated theory than other theories for the study of 
special continuum and geological materials, such as rocks, soils, and manufactured porous materials like ceramics and 
pressed powders. Generally, this theory based on the balance of energy, where the presence of the pores or voids 
involves an additional degree of freedom, called the fraction of elementary volume. In [12] Cowin and Nunziato 
established a theory to describe the linear elastic materials with voids. Iesan [13, 14] has developed a linear theory of 
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thermoelastic materials with voids. The temperature dependence is an important physical property of materials 
reflecting the elastic deformation capacity of the material when subjected to an applied external load. Most of the 
investigations were done under the assumption of the temperature-independent material properties, which limit the 
applicability of the obtained solutions to certain ranges of temperature. At high temperature, the material characteristics 
such as the modulus of elasticity, Poisson's ratio, the coefficient of thermal expansion and the thermal conductivity are 
no longer constants [15]. In recent years due to the progress in various fields in science and technology the necessity of 
taking into consideration the real behaviour of the material characteristics prosperities as the temperature dependent 
measurements. In the classical theory of elasticity, the effect of the gravity neglected in a general manner. Bromwich 
[16] in particular on an elastic globe, was the first study the effect of the gravity of the problem of propagation of waves 
in solids. Laser at a high intensity when interacts with the solid surface, the absorption takes place. This in turn causes 
an internal energy gain of the substrate material and heat release from the irradiated region. Since the process, in 
general, is fast, the temperature gradients remain high in the irradiated region. This results in high thermal strain and 
thermally induced stresses in this region. The ultra-short lasers are those with the pulse duration ranging from 
nanoseconds to femto-seconds. In the case of ultra-short-pulsed laser heating, the high intensity, energy flux and ultra-
short duration laser beam have introduced situations where very large thermal gradients or an ultra-high heating rate 
may exist on the boundaries by Sun et al. [17]. The microscopic two-step models, that is, parabolic and hyperbolic are 
useful for modifying the material as thin films. When a laser pulse heats a metal film, a thermoelastic wave generated 
due to thermal expansion near the surface. Othman et al. [18] investigated a model of thermoelasticity under thermal 
loading due to laser pulse. 
This investigation studies the effect of the temperature dependent properties and the gravity field of porous 
thermoelastic solid heated by laser pulse with both types II and III of the (G-N) theory. The physical quantities obtained 
analytically. The physical quantities represented graphically in the presence and the absence of the gravity, the 
temperature dependent, the laser pulse and the porous effect. 
 

II. BASIC EQUATIONS, FORMULATION AND SOLUTION OF THE PROBLEM 
 

 Following Green and Naghdi [5] of type III, Cowin and Nunziato [12], the field equations and the constitutive 
relations for a porous linear homogenous, isotropic thermoelastic solid without body forces, heat sources and extrinsic 
equilibrated body force and heated by a laser pulse, can be written as 

, ,ij j iu    (1) 

, , 1 0 , ,+ = ,ii k k t ttbu mT          (2) 
*

, , 0 , 0 , , ,ii iit e tt tt tkT k T mT C T T e Q         (3) 

, , ,( ) , , , 1, 2,3,ij k k ij i j j i ij iju u u b T i j k             (4) 

, ,
1 ( ).
2ij i j j ie u u   (5) 

Where, ,   are the Lame constants, 1 0, , , ,b m   and   are the constants due to porous material, T is the absolute 
temperature, (3 2 ) t     since t is the coefficient of thermal expansion,  is the density, eC is the  specific heat, k is 
the thermal conductivity, *k is the material constant characteristic of the theory, 0T  is the reference temperature chosen 
so that 0 0( ) 1T T T  ,   is the change in the volume fraction field, e is the dilation, ije is the strain components, ij

are the stress components, ij is the Kronecker delta, and Q is the heat input of the laser pulse. When * 0k   then (3) 
reduces to the heat conduction equation in (G-N) theory of type II. Consider a homogeneous, linear, porous and 
isotropic thermoelastic solid with half space ( 0),y  the rectangular Cartesian coordinate system ( , , )x y z having 
originated on the surface 0.z   In equations for this problem a dot denotes differentiation with respect to time, while a 
comma denotes the material derivative. For two dimensional problem assume the dynamic displacement vector as 

( 0),= u,v,u  all the considered quantities will be functions of the time variable  and of the coordinates x the axis y. The 
laser pulse given by the heat input illuminates the plate surface 
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Where, 0I  is the energy absorbed, 0t is the pulse rise time, r  is the beam radius, x is the heat deposition due to the 
laser pulse is assumed to decay exponentially within the solid. To study the effect of the temperature dependence of 
modulus of elasticity, keeping the other elastic and thermal parameters, assuming that 

1 ( ),f T   1 ( ),f T 
 1 ( ),f T 

 1 ( ),f T 
 0 11 ( ),f T 

 1 11 ( ),f T 
 1 ( ),f T    1 ( ),m m f T  1 ( ).b b f T  

Where, 1 1 1 1 11 11 1 1 1, , , , , , , ,m b        are constants, *
0( ) (1 )f T T  is a non-dimensional function of temperature and *  is 

the empirical material constant. 
Equations (1)-(3) in the 2-D space under the effect of the gravity field under the temperature dependent investigation 
will be on the form 

2
2

1 1 1 1 1 1 1 1 1 2( ) ( ) ( ) ( ( )) ( ( )) ,T v uu b g f T f T
x x x x t
e 

         
    

      
    

 (7)  

2
2

1 1 1 1 1 1 1 1 1 2( ) ( ) ( ) ( ( )) ( ( )) ,
T u vv b g f T f T

y y y x t
e 

         
    

      
    

 (8) 

2
2

1 1 11 1 11 1 1 1 1 1 2( ) ( ) ( ) ( ) ( ) ,b e m T
t t
 

         
 

     
 

 (9) 

2 2
2 * 2

1 0 1 02 2( ) ( ) .e
T ek T k T m f T T C f T T Q

t t tt t


  
    

      
   

 (10) 

The equation can put in a more convenient form by using the following non-dimensional variables 
*
1

1
( y , ) = ( , , , ),x , u ,v x y u v

c
     1 1

1

1( , ) = ( , ),ij ijp p 


  
0

= ,T
T

   *
1 1

= ,gg
c 

  
*2
1

2
1

= ,
c

 
   *

1= ,t t  *
1 0

,
e

QQ
T C

   2 1 1
1

2( )c  



  and 

2
* 1
1

C ce
k


    (11) 

To relate the displacement components to the two potential functions 1  and 2ψ  use the expression 
1 2u

x y
  

 
 

 and 1 2 .v
y x
  

 
 

 (12) 

To get the exact solution without any approximation for the physical quantities, consider the solution in the form of the 
normal modes as 

* * * *
1 2 1 2[ , , , ]( , , ) [ , , , ] ( ) exp{i ( )},x y t y a x t           (13) 

Where, * * * *
1 2[ , , , ]( )y     are the amplitude of the physical quantities,   is the angular frequency, i 1   and a  is the 

wave number in the -x  direction. 
Eqs. (7)-(10), with the help of the Eqs. (11)-(13) after dropping primes for convenience 

2 * * * *
2 1 3 2 4 5[D ] 0,m m m m         (14) 

* 2 *
6 1 7 2[D ] 0,m m     (15) 

2 2 * 2 * *
6 1 8 9[D ] [D ] 0,a a m a         (16) 

2 2 * * 2 *
10 1 11 12[D ] [D ] ( , ) .ym a m m S f x t e           (17) 

Where, 2 2
2 5 1( ),m a a m   3 4 1(i ),m aa m  4 2 1 ,m a m  5 3 1 ,m a m  6 4i ,m a a  

2 2
7 5 ,m a a    

2 2
8 7 8 10i ,m a a a a      

9 3 2i ,m      2
10 1 9 ,m m   11 11 9i ,m a m  2 2

12 9( ),m a m   0 9 ,S Q m  
2 2

0 0( , ) (1 ) exp{( ) ( ) (i ) (i )},f x t t t x r t t a x t      2 2
0 0 02 ,Q I r t     D d dy, 1 1

1
1
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
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1 1
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1 1 1
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Ta 
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Eliminate the functions *
1 , *

2 , *  and *  between equations (14)-(17), to obtain the differential equations 
*

1 2 3 4 1 1
8 6 4 2[ ( , )exp( ),D D D D ] S A f x t y           (18) 

*
1 2 3 4 2 2

8 6 4 2[ ( , )exp( ),D D D D ] S A f x t y           (19) 
*

1 2 3 4 3
8 6 4 2[ ( , )exp( ),D D D D ] S A f x t y           (20) 

*
1 2 3 4 4

8 6 4 2[ ( , )exp( ).D D D D ] S A f x t y           (21) 

n (n =1, 2,3,4)  and n (n =1, 2,3, 4)A  can be obtained from elimination the functions from Eqs. (14)-(17). 
Equation (21) factored as 

2 2 *
1 2 3 4 4

2 2 2 2 2 2 ( , )exp( ),(D )(D )(D )(D )k k k k S A f x t y       (22) 
2 (n = 1,2,3, 4)
n

k  are the roots of the characteristic equation of the homogeneous equation of Eqs. (18)-(21). 

The general solution of the considered physical quantities which is bounded as ,y   is given by 
4

2
1n n n 2

n 1
i ( )} 2 )1 1 1( , , ) exp{ (( ) ) exp( ,u L R k y t ax A x r A B Q yx y t  


       (23)

 
4

2
1n n n 2

n 1
i ( )} 2 )1 1 1( , , ) exp{ ( ( )) exp( ,v M R k y t a x A xA r B Q yx y t  


        (24)

 
4

2n n n 3
n 1

i ( )} )1 1( , , ) exp{ exp( ,C R k y t a x A B Q yx y t  


      (25)
 

4
3n n n 4

n 1
i ( )} )1 1( , , ) exp{ exp( ,C R k y t a x A B Q yx y t  


      (26)

 
4

5n n n 3
n 1

i ( )} )1 1( , , ) exp{ exp( ,yy C R k y t a x B B Q yx y t  


      (27)
 

where 2
1n 6 n 7( ),C m k m   2 2 2 2

2n 6 5 n 9 3 1n 9 n 2 5 n 8 9 4{ ( ) ( )} { ( ) },C a m k a a m C a k m m k m a m       2
3n 6 5 n 2 3 1n 4 2n 5{ ( ) } ,C a m k m m C m C m   

5n 12 1n n 1n 13 n 1n 14 2n 15 3n(i ) 2 ,C a aL k M a k M a C a C     8 6 4 2
1 1 2 3 41 { },B              1 1( , ),Q Sf x t 2 2

1 0 0( , ) (1 )exp{( ) ( )},f x t t t x r t t      
2

2 2
3 12 1 2 1 13 1 14 3 15 42 2 2 2

2 22 2[ { (1 ( )) } ( ))] 2 ( ) ,x A x AxB a A x A A a A a A a A
r r r r

              1
12

1

( ) ,f Ta 


 13 ( ),a f T
2

1 1
14 *2

1 1 1

( ),bc f Ta


  1 0
15

1

( ) ,T f Ta 


  

1n n 1n(i ),L a k C   1n n 1n( i ),M k a C   n 1,2,3,4.
 Since, n (n 1,2,3,4)R   are constants (the coefficients of the series). 

 
III. APPLICATIONS 

 
 Consider the following non-dimensional boundary conditions to determine the coefficients n (n 1,2,3,4)R   and 
suppress the positive exponentials to avoid the unbounded solutions at infinity. Then the surface of the solid at 0y   
assumes these conditions 
(1) The mechanical boundary conditions are 
(i) The normal stress condition (mechanically stressed by constant force 1p ), so that 

  i ( ) ,a x t
yy 1p e     (28) 

(ii) The tangential stress condition (stress free), then 
                         0,xy   (29) 
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(2) The condition of the voids (the volume fraction field is constant in y-direction). This implies that 

                          0,
y




 (30) 

(3) The thermal condition (the half-space is a thermally insulated boundary). 

 0.
y




 (31) 

Substituting the expressions of the considered quantities in these boundary conditions, to obtain the equations satisfied 
by the parameters. Then one can obtain a system of four equations. After applying the inverse of matrix method, we get 
the values of the constants n (n 1, 2,3, 4).R   

51 52 53 541 1

61 62 63 642

3 1 21 2 22 3 23 4 24

4 1 31 2 32 3 33 4 34

0
.

0
0

C C C CR p
C C C CR

R k C k C k C k C
R k C k C k C k C

    
    
            
                

 (32) 

Hence, obtain the expressions for the physical quantities of the plate surface. 
 

IV. PARTICULAR CASES 
 

 (i)  In the case of absence of the gravity: taking 0g  in equation (1). 
 (ii)  In the case of absence of the temperature dependent properties: taking * 0   in the relations 
 (iii) In the case of the absence of the porous: taking 1 0, , , ,b m    and 0  in Eqs. (1)-(4). 
 

V. NUMERICAL RESULTS AND DISCUSSION 
 

 Following Dhaliwal and Singh [19], the porous magnesium crystal-like thermoelastic solid chosen to evaluate the 
numerical results. All the units of parameters used in the calculation given in SI units. The constants of the problem 
taken as  

10 22.17 10 / ,N m   10 23.278 10 / ,N m   21.7 10 / ,k W m K   31.04 10 / ,eC J kg K   3 31.74 10 / ,kg m    6 22.68 10 / ,N m K       
* 11
1 3.58 10 / ,s    5 21.78 10 / ,t N m    0 298 ,T K  15 21.753 10 ,m    53.688 10 ,N    10 2

1 1.475 10 / ,N m    29.8 m / s ,g =  
10 21.13849 10 / ,b N m  6 22 10 / ,m N m K   3 2

0 0.0787 10 / ,N m s   3 2

0

10 / ,I J m 10 ,r m  50 / ,m   
0

4t n s,  2
1 1.5 / ,p N m  

* 85 / ,k W m K   1.6 ,a m  1i ,     10 ,x m  0.1 / s,rad   1 5.5 / s,rad   0.01 ,t s  0 2 .y m   
 These numerical values were used for the variation of the real parts of  the displacement, the temperature, the stress 
and change in the volume fraction field. Figs. 1-13 are graphically represented changes in the behavior of the physical 
quantities against distance y in 2D for the (G-N)  theory of both  types II and III in the presence and absence of the 
gravity effect ( 9.8,0)g  during * 0.00051,  the temperature dependent *( 0.00051,0)  during 9.8g  , in the presence and 
absence of the porous effect on the solid. Figs. 1-4 represent the variation of the considered physical quantities in the 
case of the absence and the presence of the gravity since the other effects are present. Figs. 5-8 determine the variation 
of the considered physical quantities in the case of the absence and the presence of the temperature dependent although 
the other effects are present. Figs. 9-11 show the variation of the physical quantities in the case of the absence and the 
presence of the laser pulse effect although the other effects are present, while figs. 12-13 show the variation of the 
considered physical quantities in the case of the absence and the presence of the porous effect although the other effects 
are present. In the obtained figures, the solid and dashed lines represent the solutions in the context of the (G-N) theory 
of type II and the lines with dots represent the derived solutions using (G-N) theory of type III. Fig. 1 shows the 
variation of the displacement u in the case of 9.8, 0;g   it noticed that the variation of u is increasing in the case of both 
types II and III of (G-N) theory for 0,y  with the increase of the value of .g  Fig. 2 clarifies the variation of   is 
increasing for types II and III of (G-N) theory with the increase of the gravity for 0.y    
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Fig. 1  Variation of u with and without the gravity                          Fig. 2  Variation of   with and without the gravity 

 
Fig. 3 depicts the variation of yy is increasing for both types II and III of (G-N) theory with the increase of g for 0.y   
Fig. 4 expresses the variation of   is decreasing with the increase of the value of g for 0y   in both types II and III of 
(G-N) theory with the increase of the value of g for 0.y   It is clear that the gravity has an important role in the 
variation of the physical quantities. Fig. 5 shows the variation of the displacement u  in the case of * 0.00051, 0;   it 
noticed that the variation of u  is increasing in the case of (G-N) theory of both types II and III for 0y   with the 
increase of the value of *.  Fig. 6 clarifies the variation of   is increasing for types II and III of (G-N) theory with the 
increase of the temperature dependent properties for 0.y   Fig. 7 depicts the variation of yy  for * 0.00051, 0;   it is 

noticed that the variation of yy  is decreasing for both types II and III of (G-N) theory with the increase of *  for 0y   

with the increase of *  value. 

            
Fig. 3  Variation of yy  with and without the gravity                    Fig. 4  Variation of   with and without the gravity 

Fig. 8 expresses the variation of   is decreasing with the increase of the value of *  for 0y   in both types II and III 
of (G-N) theory. It deduced that the temperature dependent properties have a significant role in the variation of the 
physical quantities.  

                      
Fig. 5  Variation of u with and without the temperature dependent              Fig. 6  Variation of   with and without the temperature dependent 

 

                      
Fig. 7  Variation of yy  with and without the temperature dependent    Fig. 8  Variation of   with and without the temperature dependent 
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Fig. 9 shows the variation of the displacement u  in the case of the absence and the presence of the laser pulse effect; it 
noticed that the variation of u  is increasing in both types II and III of (G-N) theory for 0y   with the increase of the 
laser pulse value of the porous thermoelastic solid. Fig. 10 expresses the variation of yy  in the case of the absence and 
the presence of the laser pulse effect; it observed that the variation of yy  is increasing in both types II and III of (G-N) 
theory for 0y   with the increase of the laser pulse value of the porous thermoelastic solid.  

                          
Fig. 9  Variation of u with and without the laser pulse effect                          Fig. 10  Variation of yy  with and without the laser pulse effect 

Fig. 11 clarifies the variation of   in the case of the absence and the presence of the laser pulse effect; it observed that 
the variation of   is decreasing in both types II and III of (G-N) theory for 0y   with the increase of the laser pulse 
value on the porous thermoelastic solid. It deduced that the presence of the laser pulse effect is a significant in the 
variation of the physical quantities. Fig. 12 shows the variation of the displacement u  in the case of the absence and the 
presence of the porous effect; it noticed that the variation of u  is decreasing in both types II and III of (G-N) theory for 

0y   with the increase of the porous existence on the thermoelastic solid. 
 

 
Fig. 11  Variation of   with and without the laser pulse effect 

 
Fig. 13 clarifies the variation of   in the case of the absence and the presence of the porous effect; it observed that the 
variation of   is increasing in both types II and III of (G-N) theory for 0y   with the increase of the porous existence 
on the thermoelastic solid. It deduced that the presence of the porous effect is a significant in the variation of the 
physical quantities. All the previous functions are continuous and all curves converge to zero.  
 

                        
Fig. 12  Variation of u with and without the porous effect                           Fig. 13  Variation of   with and without the porous effect 
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3D curves are representing the complete relation between physical quantities u  and xy  with both components of the 
distance as shown in Figs. 14-15, in the presence of the gravity, the temperature dependent properties and the effect of 
the porous in the studied thermoelastic solid in the context of (G-N) theory of type III. 3D figures stated that all the 
physical quantities are moving in the wave propagation. 

                
Figs. 14, 15 respectively 3D Curve  of variation of u  and xy versus the components of distance 

 

IV. CONCLUSIONS 
 

 The gravity and the temperature dependent properties have a significant effect on the variation of the considered 
physical quantities, since they make great changes in the behaviour of the functions, also the same observation of the 
absence and the presence of the porous and the laser pulse effect in the thermoelastic solid. The laser pulse heating 
effect is an important thermal loading in many scientific uses as the biological and the geological treatments of the 
materials. These physical quantities are continuous functions and all the curves converge to zero, as the solution using 
the normal mode method gives the exact solutions of the functions. 
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