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ABSTRACT 

 

Biofuels can be produced from almost all types of lignocellulosic 

materials, such as forest residues, wood or agricultural. Lignocellulosic 

biomass can be the potential substitute to gasoline. There are many factors 

that cause hindrance to hydrolysis of cellulose present in biomass to 

fermentable sugars that can further be used to produce biofuel. The goal of 

pretreatment is to make the cellulose accessible to hydrolysis for conversion 

to fuels. There are several pretreatment methods that modify the physical 

and chemical arrangement of the lignocellulosic biomass and improve the 

rate of hydrolysis. From the past few decades a huge number of 

pretreatment methods have been evolved including acidic pretreatment, 

ammonia explosion, alkaline pretreatment etc. In this review, different 

pretreatment methods have reported. 

 

INTRODUCTION 

 

In past few decades, due to the rapid increase in world’s energy demand and ambiguity in supply, increasing 

fossil fuels prices, increased environmental pollution, it has become imperative to develop alternate sources of 

energy that can replace natural fossil fuels [1-5]. Burning of fossil fuels release CO2, that is a major cause of global 

warming. United States comprise of only 4.5% of world’s population is consuming 25% of global energy and emit 

25% of total CO2 [6-9]. To compensate the increasing demand of natural fossil fuel biofuel are the most promising 

alternative source of energy with minimum emission of pollutants such as carbon dioxide, sulphur, carbon 

monoxide and nitrous compounds [10-15].  

mailto:er.meet3031@yahoo.com


Research and Reviews Journal of Microbiology and Biotechnology 
 
 
 

2 RRJMB | Volume 5 | Special Issue on Biotechnology 

| September, 2016 

e-ISSN: 2320 - 3528 
p-ISSN: 2347-2286 

Lignocellulosic biomass is the most abundant and available renewable feedstock present on earth with the 

globally annual production of 1x1010 MT. The biofuels produced from lignocellulosic biomass resources have the 

potential to reduce greenhouse gas emissions by 86% [16-18]. Lignocellulosic biomass can be agricultural waste such 

as wheat straw, sugarcane bagasse, corn Stover, and dedicated energy crops, forestry wastes such as hardwood 

and softwood, municipal solid waste, animal manures etc. However byproducts of biofuels can also be utilized as 

biological manure, reducing the use of chemical fertilizers [19-25]. 

Lignocellulosic biomass is a crystalline structure, mainly comprised of cellulose, hemicellulose, lignin and 

pectin. Composition of every component varies depending on the origin of lignocellulosic material. Among these 

cellulose and hemicelluloses are sugar polymers and can be further hydrolyzed to fermentable sugar [26-28]. Major 

structural component of cell wall is Cellulose and provides mechanical and chemical stability to plants. Lignin forms 

outer covering of cellulose and hemicellulose, which prevents the availability of cellulose and hemicellulose to 

various fungi and bacteria for biofuel production [29]. To convert biomass to biofuel breakdown of cellulose and 

hemicellulose to its monomers is must, so that it can be utilized by microorganisms. Therefore, a pretreatment is 

required for destruction of lignin prior to conversion of cellulose and hemicellulose into simple sugars [30-33].  

Pretreatment is the most expensive steps for the conversion of lignocellulosic biomass to fermentable sugar. 

Various Methods of pretreatment has been developed for different varieties of lignocellulosic biomass and have 

varying results based on composition of cellulose, hemicellulose and lignin in raw material used biofuel production 

[34-37]. Pretreatment alters/damage the structure of lignocelluloses and remove lignin and expose cellulose and 

hemicellulose for hydrolysis for conversion to fermentable sugars. The main focus of the pretreatment process is to 

disrupt the structure of lignin and cellulose, so that it can be accessible by acids or enzymes for hydrolysis [28,38-43]. 

 

STRUCTURE OF LIGNOCELLULOSIC BIOMASS 

Lignocellulosic biomass refers to waste obtained from plants that mainly consist of cellulose, hemicellulose 

and lignin. 

 

Cellulose C6H10O5)n 

 

Cellulose is an organic polymer made up of linkage of small monomers of anhydroglucose by β-1,4)-

glycosidic bonds that forms a linear-chain polymer [44-47]. Various characteristics properties of cellulose rely on the 

degree of polymerization that is the number of glucose monomers which make one polymer molecule. The nature of 

linkage between the molecules of glucose leads to the arrangement of polymer in long linear chain [48-52]. 

 

Hemicellulose 

 

Hemicellulose is a physical barrier covering the cellulose fibers and prevents enzymatic hydrolysis of 

cellulose. Disintegrating the hemicellulose increases substrate pore size and increase exposure of cellulose for 

hydrolysis [53]. Unlike cellulose, hemicellulose does not only comprise of glucose units, but also contain pentose and 

hexose monosaccharides. Hemicelluloses are water insoluble at low temperature. Hydrolysis of hemicellulose 

initiates at temperature lower than that of cellulose [54-59]. 
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Lignin 

 

Lignin is the complex natural polymer that is second abundant and important organic compound in the plant 

cell. Lignin is a polymer made up of phenolic crosslinking that provide structural integrity to cell wall of plant cell [60-

63]. Lignin is a three-dimensional polymer that is made up of phenyl propane monomers as the predominant 

building blocks. Lignin in wood is an insoluble three-dimensional structure [64,65]. It plays vital role in the cell's 

development and endurance, as it helps in transportation of nutrients, metabolites and water in the plant cell [66-68]. 

 

PRETREATMENT OF LIGNOCELLULOSIC BIOMASS 

 

Pretreatment is an important and most expensive step in production of biofuel. Several pretreatment 

methods have been developed till now to solubilize, fractionate, separate and hydrolyze cellulose, hemicellulose, 

and lignin components of plant cell [69,70-75]. Pretreatment changes the structure of lignocellulosic biomass which 

increases the accessibility of cellulose to enzyme that converts it into fermentable sugar Figure 1) [76-78]. 

 

Pretreatment methods are mainly categorized into four major types: 

 Physical Pretreatment 

 Chemical Pretreatment 

 Physiochemical pretreatment 

 Biological Pretreatment 

 

Figure 1: Effect of pretreatment on lignocellulosic pretreatment. 

 

Physical Pretreatment 

 

Mechanical pretreatment 

 

The main objective of mechanical pretreatment is to decrease the size and crystallinity of lignocellulosic 

biomass that increases the surface area of cellulose for hydrolysis. Mechanical pretreatment can be performed by 

grinding, milling or milling as per requirement to get the desired particle size of the biomass [79-80]. 
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Extrusion 

 

In Extrusion process biomass is treated at very high temperature more than 3000C followed by shearing 

and mixing of biomass which leads to chemical modification of cellulose [81-83]. The barrel temperature and screw 

speed are considered to disintegrate the structure of lignocellulosic biomass causing shortening, defibrillation, and 

fibrillation of the fibers that increases exposure of cellulose to enzymatic attack [84-86]. 

 

Chemical Pretreatment 

 

Acidic Pretreatment 

 

Acid pretreatment can be performed either with concentrated or diluted acid but concentrated acid is less 

used due to the formation of inhibiting compounds. Concentrated acids are mild, corrosive and hazardous, so to 

corrosive resistant vessels should be used to perform concentrated acid pretreatment [67-68,87-89]. Acidic 

pretreatment results in chemical hydrolysis of lignocellulosic biomass which disintegration hemicellulose and lignin 

which increases the exposure of cellulose to enzyme. Most commonly used acids are Sulphur acid H2SO4), 

Hydrochloric acid HCL), Nitric acid, Phosphoric acid, oxalic acid, acetic acid etc. Dilute acid pretreatment method is 

the mostly used for industrial scale pretreatment process [28,90-91]. 

 

Alkaline Pretreatment 

 

Alkaline Pretreatment is performed by treating lignocellulosic biomass with alkali potassium, Sodium, 

ammonium and calcium hydroxides) at normal pressure and temperature. The process efficiently removes lignin 

from the biomass and exposes cellulose for enzymatic hydrolysis. Alkali pretreatment can also be performed at 

lower pressure, temperature and time ranging from various hours to days. Alkali pretreatment is more effectively 

expose cellulose’s internal surface area to enzyme and reduce crystallinity of structure [43,92-94].  

 

Ozonolysis 

 

The lignocellulosic biomass is treated with ozone O3), a powerful oxidizing agent that degrades lignin by 

breaking aromatic rings structure and causes no harm to hemicellulose and cellulose. This method is effective on 

different kinds of lignocellulosic biomass Sugarcane bagasse, wheat straw, rice husk, corn stover, sawdust etc.). 

Ozonolysis pretreatment is performed at room temperature and normal pressure and do not have any toxic 

byproduct that can effect hydrolysis and fermentation [95,96].  

 

Ionic Liquids 

 

Ionic liquids are those salts those are in liquid phase at room temperature. There are a large number of 

salts that possess the same characteristic and another characteristic theses salts share is they have inorganic 
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anions an organic cation which forms a heterogeneous structure of these salts. This pretreatment process is not 

practiced at industrial scale and there is not much study done on the effects of this pretreatment on lignocellulosic 

biomass [88,90,97]. 

 

Physiochemical Pretreatment 

 

Steam explosion 

 

Steam explosion is common and cheap method used for the treatment of the lignocellulosic biomass. In 

this method biomass is treated with steam under high pressure for few seconds 35 s) to minutes 25 min) and 

followed by sudden decrease in pressure which leads to explosive shock decompression of the biomass. Biomass is 

treated at 1610C to 2610C under pressure of 0.70-4.82 MPa and then exposed to atmospheric pressure. The 

pretreatment leads to the degradation of hemicellulose and transformation of lignin due to high temperature and 

pressure, thus explosion cellulose for hydrolysis [76,84,98]. 

 

Ammonia fiber explosion AFEX) 

The process is similar to steam explosion. Ammonia fiber explosion is pretreatment method in which 

lignocellulosic biomass is treated with liquid ammonia at high pressure and temperature for time period followed by 

sudden decrease in pressure. In this process 1 to 2 kg liquid ammonia is used per kg of dry biomass at 

temperature of 900C-950C for time period of 30 min to 35 min. The AFEX pretreatment method has been used for 

the treatment of large number of lignocellulosic biomass such as wheat straw, wheat chaff and alfalfa etc.  

 

CO2 explosion 

 

The process is similar to steam explosion and ammonia fiber explosion. This pretreatment method is 

mostly employed to hydrolyze hemicellulose and cellulose. In this method supercritical CO2 explosion is used at low 

temperature that also reduces the expense of the process. It was observed that CO2 produces carbonic acid when 

reacts with water and increase the hydrolysis of cellulose. CO2 explosion yields less as compare to Steam explosion 

and ammonia fiber explosion, but it yields more when compared to enzymatic hydrolysis [23,56,67,82,99]. 

 

Biological Pretreatment 

 

Biological Pretreatment is a safe and eco-friendly method of pretreatment, as it does not requires 

expensive equipment’s and also does not need much energy. In biological pretreatment various microorganisms 

such as white rot fungi, soft rot fungi and brown rot fungi are used. Brown rot fungi only hydrolyze cellulose, 

whereas soft rot fungi and white rot fungi attacks both on hemicellulose and lignin. White rot fungi produces 

enzymes peroxidases and laccase that help in degradation of the lignin and is most effective in biological 

pretreatment [92,100]. 

 

CONCLUSION 
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The increasing use of biofuels leads to development by reduction of greenhouse-gas emissions and the use 

of natural fossil fuel resources. Lignocellulosic biomass, including forestry residues and agricultural can be ideal, 

inexpensive and easily available source of sugar for biofuels production. Crystallinity of cellulose, available surface 

area, covering by lignin, and Wrapping by hemicellulose are resistance to cellulose hydrolysis. Pretreatment od 

biomass and its intrinsic structure are initially responsible for its hydrolysis. Therefore, pretreatment of 

lignocellulosic biomass is very important step in the production of biofuels from lignocellulosic biomass, and it is 

very important to understand the basics of different pretreatment methods, that can be helpful in making right 

choice depending on the chemical and physical characteristics of the biomass and the hydrolysis agent. 
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