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Abstract: In this work, we propose a new basis of wavelets constructed using Laguerre polynomials. Several methods of 

wavelet construction like Daubechies, splines and coiflets are present in the literature without an exhaustive approach 

using orthogonal polynomials, and more precisely the Laguerre polynomials. The generalized Laguerre polynomials 

under certain conditions oscillate like wavelets, as such; we present a method of continuous (wavelets construction, using 

the generalized Laguerre polynomials, as well as a proof by mathematical induction that the constructed wavelets respect 

the admissibility condition of wavelets. The constructed wavelets are further applied in the detection of a pattern in a 

signal. The results show that, even under the influence of white Gaussian noise, the pattern is accurately detected. 
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I. INTRODUCTION 

 

Wavelets are functions which oscillate (wave) and varnish (let), and can be used as basic functions for the decomposition 

of signals just like the sine and cosine functions are used in the Fourier transform decomposition. Many wavelets have 

been constructed in both the mathematical analysis and signal processing literature over the last few years [1,2]. In 

mathematical analysis, wavelets were originally constructed to better analyse and represent geophysical signals using 

translates and dilates of one fixed function. Unlike the Fourier transform which gives only frequency information about a 

signal, wavelets give both time (space) and frequency information. In signal processing, wavelets originated in the 

context of sub band coding, or more precisely, quadrature mirror filters [3,4]. The introduction of multi resolution 

analysis and the fast wavelet transform by Mallat and Meyer brought a connection between wavelets and the pyramidal 

coding scheme, well known before then by electrical engineers. In this like, FIR (finite impulse response) filter 

coefficients that respect certain criteria are used with the cascade algorithm to generate wavelets and scaling functions. 

Daubechies constructed the orthogonal, compactly supported wavelets. These are wavelets that have maximum 

varnishing moments for a given number of filter coefficients. Since then, several generalizations to the orthogonal 

wavelets case have been presented like biorthogonal wavelets for example.  

 

Wavelets can also be seen as being either continuous or discrete. From the mathematical perspective, most of the 

wavelets have an explicit expression, and are seen as continuous wavelets. Examples are the Morlet, Mexican hat and 

Shannon wavelets. From the signal processing point of view, wavelets are merely the coefficients of finite impulse 

response filters, which are either orthogonal or biorthogonal. Examples are the Daubechies wavelets and the coiflets. The 

continuous wavelets are generally not compactly supported, have no scaling function, and are implemented via the 



 
 

continuous wavelet transform algorithm. Several techniques have been used to construct wavelets and applied in de 

noising, filtering and ECG signal compression [5], yet little has been said and done on the construction of wavelets using 

Laguerre polynomials. This work is therefore aimed at showing that, Laguerre polynomials can be useful in wavelets 

construction.  

 

Wavelets are functions which were designed initially to give both the time (space) and frequency information of non-

stationary signals (signals whose frequencies vary with time).  Let  tx be a function, its continuous wavelet transform 

(CWT) is given by: 
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Where ( )t  is called the mother wavelet while “a” and “b” are scale and translation parameters respectively. *( )t  is 

the complex conjugate of ( )t  . In (1), the mother wavelet is used as a basis function for the transform and it has to 

fulfill certain conditions (admissibility and regularity conditions). The admissibility condition gives us the wave, that is: 
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The regularity condition gives us the ‘let’. This means that the wavelet should have a fast decay, and is determined by the 

varnishing moments of the wavelet. As such, 
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This is also known as approximation order [6]. In many signal processing applications, wavelets have proven to produce 

better results than the Fourier transform. It all started with the need to represent both the time and frequency information 

of a signal, which is a short coming of the Fourier transform. In 1986 Stephan Mallat and Yves Meyer developed the idea 

of multiresolution analysis (MRA) for discrete wavelet transform (DWT). This idea, on the other hand, was all too 

familiar to electrical engineers for about twenty years under the name of quadrature mirror filters (QMF) and sub band 

filtering, which were developed by A. Croisier, D. Esteban and C. Galand around 1976. The foundations of the modern 

wavelet theory were laid in 1988, with the development of Daubechies' orthonormal bases of compactly supported 

wavelets. In 1992, Albert Cohen, Jean Feauveau and Ingrid Daubechies constructed the compactly supported 

biorthogonal wavelets, which are preferred by many researchers over the orthonormal basis functions [7]. 

 

The rest of the work is divided as follows: in section II, we focus on the construction of continuous wavelets using 

Laguerre polynomials. In section III, we proof by mathematical induction that the constructed wavelets respect the 

admissibility condition of wavelets. In section IV, the constructed wavelets are applied in pattern detection and a 

conclusion ends this paper. 

 

II. FROM LAGUERRE POLYNOMIALS TO LAGUERRE WAVELETS: 

 

The generalised Laguerre polynomials, named after Edmond Laguerre (1834 - 1886), are solutions of Laguerre's 

equation, which is a second-order linear differential equation given by [8,9]. 
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The three term recurrence relation for this equation is: 
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And the closed form is given for smaller values of n. 
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The simple Laguerre polynomials can be obtained by setting the parameter of the generalized Laguerre polynomials α=0. 

The Laguerre polynomials arise in quantum mechanics, in the radial part of the solution of the Schrödinger equation for a 

one-electron atom. They also describe the static Wigner functions of oscillator systems in quantum mechanics in phase 

space. In signal analysis, Laguerre polynomials have also been used to model electro cardiogram (ECG) signals [8] and 

for data compression [9]. In [10], a method is proposed whereby simple Laguerre polynomials are modified to wavelets 

and are used to solve delay differential equations of fractional order. We propose a family of wavelets that would serve 

as basis functions in the analysis of a non-stationary signal. We start by a very popular wavelet, the Mexican hat wavelet. 

It is proportional to the second derivative of the Gaussian function, so we verify that all other derivatives are also 

wavelets. This shall be done with the help of the hermite polynomials. The hypothesis is: 
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The Hermite polynomials are defined as: 
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With a change of variable
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The Laguerre polynomials are defined in terms of the Hermite polynomials as: 

For even values: 
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Where Jn and Kn are normalization constants such that the L2 norm of the wavelets is 1. 
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The first four Laguerre wavelets are: 
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It can be noticed that the second wavelet is identical to the Mexican hat wavelet. The plots of the first four Laguerre 

wavelets are given in Figure 1. 

 

Figure 1: Plot of the first four laguerre wavelets. 

 

It is worth noting that, these are a family of wavelets which are identical to those defined in [11] and called the Mexican 

hat wavelet family. These alongside the Gaussian wavelet family are actually wavelets that originate from the so called 

Hermitian wavelet, whose expression is: 
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Kn is a normalization constant such that the L
2
 norm of the wavelets is 1. It can be verified that, for m=1, we obtain the 

Laguerre wavelet family if the Hermite polynomials are the probabilists Hermite polynomials defined as: 
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Meanwhile, for m=0.5, we obtain the Gaussian wavelets family if the hermite polynomials used are the physicists 

Hermite polynomials defined as: 
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All other similar wavelet families can be obtained by varying the parameter m and the type of Hermite polynomials used. 

The results are wavelets of similar shapes but different expressions. Below is a plot of the Laguerre 2 wavelet and the 

Gaussian 2 wavelet on the same scale (Figure 2). 

 

Figure 2: Plot of the Gaussian 2 wavelet and the Laguerre 2 wavelet . Corresponding to the variation of 

parameter m, that is ψ0.5,2 and ψ1,2 respectively. 

 

Properties of the Laguerre wavelets: They are continuous wavelets with explicit analytic expressions given in (16). These 

wavelets are not orthogonal and can be used to perform the continuous wavelet transform only. More so, they are not 

compactly supported (their domain of definition is from negative to positive infinity) but have an effective support of (-5, 

5)  [12]. 

III. PROOF BY ADMISSIBILITY CONDITION. 

The admissibility condition is written as: 
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If we let  
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For n=1, we have: 
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Again, for n=1 we have: 
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We have shown above that 
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With the same reasoning, we have 

2 2 2 2

2 2 2 2
3 1

1
( )

2

x x x x

x dx K x x xe dx xe dxdx x xe dx xe dxdx dx


    




    
        

        
                 (38)

 

2 2 2 2

2 2 2 2 2
3 1

1
( )

2

x x x x

x dx K x e x e dx e e dxdx


    

 

 
      

  
   

         

(39)

 

In [13] the integral of the Gaussian is given as: 
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Where erf(x) is the error function. In our case, a=1/2, so we have 
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In the next section, we shall proof by mathematical induction that the family of Laguerre wavelets respect the 

admissibility condition. The basic statement to proof is [14,15]: 
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In equations (24) and (30), we have shown that S1 and S2 are true. In the inductive step, let us suppose Sk and Sk+1 are 

true, it suffice to proof that Sk+2 is true in order for Sn to be true [14,15]. 
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From equation (7), we can proceed by substitution and obtain 
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It is seen from the above equations that the Laguerre wavelets respect the admissibility condition for wavelets. 

IV. SOME APPLICATIONS IN SIGNAL PROCESSING : PATTERN DETECTION 

A very common application of the continuous wavelets transform in signal processing is to detect patterns like the 

PQRST patterns of an electrocardiogram signal [16,17]. The idea here is to perform a CWT of the ECG signal which 

is non-stationary, in order to detect patterns. Let us note that, the CWT is an inner product between the signal and the 

wavelet at different scales. The part of the signal that resembles the wavelet finds its CWT coefficients multiplied, 

while the part that does not resemble the wavelet gets attenuated. 

 

This example signal is a pattern at two different scales at different time intervals. Scale here is inversely proportional 

to frequency. The CWT of the signal is capable of determining at what time interval the different frequencies occur 

(Figure 3 and Figure 4).   

 

       

 

 

 

 

     

 

Figure 3: Two signals of laguerre 1 and laguerre 2 wavelets at different scales. Their CWT indicates exactly when 

the patterns occur and their frequencies. 

 



 
 

              

                 

Figure 4: Two signals of laguerre 3 and laguerre 4 wavelets at different scales. Their CWT indicates exactly when 

the patterns occur and their frequencies. 

The analysis is further carried out with a noisy signal. It can be observed that, the presence of white Gaussian noise in the 

signal does not hinder the detection of the patterns (Figure 5 and Figure 6).  

 

                          

                           

Figure 5: Two noisy signals of laguerre 1 and laguerre 2 wavelets at different scales. Their CWT indicates exactly 

when the patterns occur and their frequencies. Noise does not hinder the detection of the pattern. 



 
 

 

                     

                        

Figure 6: Two noisy signals of laguerre 3 and laguerre 4 wavelets at different scales. Their CWT indicates exactly 

when the patterns occur and their frequencies. Noise does not hinder the detection of the pattern. 

 

V. CONCLUSION 

 

After modification, the Laguerre functions behave like wavelets. The objective of this work is to show under what 

circumstances wavelet basis can be constructed using Laguerre functions. We constructed a series of continuous wavelets 

with the help of the generalised Laguerre functions, and established the relationship between these wavelets, the Hermite 

wavelets and the more general Hermitian wavelets. From the established equation, it can be seen that other examples of 

particular cases of the Hermitian wavelet are the Mexican hat wavelet family and the Gaussian wavelets family by 

varying the parameters as shown in (17). Furthermore, we proof by mathematical induction that, the constructed wavelets 

respect the admissibility condition for wavelets. We have shown that, when we apply these wavelets in a signal 

processing task like pattern detection, their results are satisfactory, even upon the influence of white Gaussian noise. The 

CWT coefficients obtained from these wavelets are capable of determining at what time a band of frequencies occur in a 

noisy signal. 
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