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ABSTRACT: In the recent era as the devices are shrinking down low power design methodologies are of greater 
importance.A CGRA that is focused on data path computations for a particular application domain is a balancing act akin 
to design an ASIC and a FPGA simultaneously. Narrowing the application domain significantly makes the design of the 
CGRA very much like that of a programmable ASIC. Widening the application domain requires a more flexible data path 
that requires more configurable over head and has less overall efficiency compared to an FPGA.So A reconfigurable 
architecture is used with modified architecture in ALU arrays, there by reducing  power.  The Architecture presented is 
replaceable to all processors including DSP processors . 
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I.           INTRODUCTION 
 
An application specific architecture solution is too rigid, and a general purpose processor solution is too inefficient. Neither 
general purpose processors nor application specific architectures are capable of satisfying the power and flexibility requirements 
of future mobile devices. Instead,  of framing algorithm suitable for machines,,machines are made suitable for  the 
algorithm. This is the area of reconfigurable computing systems. 
This paper proposes a scheme of dynamic context Management aiming to minimize the reconfiguration overhead by reusing and 
switching contexts [2]. The technique permits background  loading of configuration data without interrupting the regular 
execution. It prevents read/write operation for redundant part of context words dynamically and overlaps computation with 
reconfiguration. Overhead  encountered in reconfiguration can be reduced by means of switching  if the next configuration is 
present in one of the alternate contexts. In this paper, we address the power reduction issues in CGRA and provide a framework to 
achieve this[4],[5]. A new design flow and a new configuration cache structure are presented to reduce power consumption in 
configuration cache. 
The power saving is achieved by dynamic context compression in the configuration cache—only required bits of the context 
words are set to enable and by disabling the redundant bits. Therefore, the new design flow has been proposed to  generate 
architecture specifications that are 
required for supporting dynamically compressible context architecture without performance degradation. The proposed CGRA 
architecture has shown to reduce power consumption in configuration cache compared to conventional context architecture with 
negligible area overhead  
 

II.          FINE GRAIN VS. COARSE GRAIN 
 

Association of  Field Programmable Gate Array (FPGA)-based system designs[1] is prominent in Reconfigurable processors. 
 

 An FPGA consists of a matrix of programmable logic  cells  with  a  grid  of  interconnecting lines  running between them. To 
provide an interface between the FPGA, the interconnecting lines and the chip's external pins ,input and output pins are provided. 
However, FPGAs  tend  to  be  somewhat  fine-grained  in  order  to achieve a high degree of flexibility. This flexibility has its 
place for situations where the computational requirements are  either  not  known  in  advance  or  vary  considerably among the 
needed applications. However, in many cases this extreme level of flexibility is unnecessary which is the cause for increase in 
area, delay and power consumption. 

 
Contrasted with FPGAs, the data-path width of coarse grained reconfigurable architectures is more than one bit. To improve 

the efficiency of a system  the  reconfiguration  used is coarse-grained and is performed within a processor or amongst 
processors. In such systems the reconfigurable unit is a Specialized hardware architecture that supports logic reconfiguration. The 
reconfiguration procedure is much faster than that found in FPGAs[8]. due to the faster design in data paths as application domains 
are known and it  is area-efficient. Typically, a CGRA consists of a main processor, reconfigurable array architecture 
(RAA)[4][5], and their interface, as shown in Fig. 1.1. The RAA has identical PEs containing functional units  and  a  few  
storage units  such  as  ALU,  multiplier, shifter, and register file.  Data to PE array is obtained from data buffer through a 
high-bandwidth data bus. The configuration cache (or context memory) stores the context words used  for  configuring the  PE  
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array  elements. The context register between a PE and a cache element (CE) in configuration cache is used to keep the cache 
access path from being the critical path of the CGRA[7]. 
 

 
 

Figure 2.1 General block diagram of CGRA 
 

A.          Power Advantages In CGRA: 
Studies of the power consumption within an FPGA, as shown that 50% to 60% of the energy of an FPGA is dissipated in 

the routing fabric, 20% to 40% in the logic blocks and 5% to 40% in the clock network. Using these number as references, it 
is infered that interconnect offers the greatest chance for energy optimization, followed by the logic blocks. One key aspect 
in the transition from fine-grained to coarse-grained configurable architectures is the overhead associated with configuration 
control logic. 

Therefore, improvements in the CGRA will be measured indirectly at the system level. By abstracting the effects of a 
given silicon manufacturing technology, custom layout, or even the specifics of implementing a power efficient arithmetic 
unit we can focus on architectural features that 
provide a significant power advantage. The primary source of architectural power efficiency is the transition from a bitwise 
to word-wide datapath, which can be further refined 
into categories for interconnect, arithmetic and logic, and configuration overhead.In the previous work the following 
observations are made 

The efficiency of the interconnect within the data plane are improved by the following ways: 
a)    Reducing the number of pair-wise routing options, i.e. connectivity. 
b)   Reducing   interconnect   switching   complexity   by 

bundling wires into buses. 
c)    Reducing the average interconnect length by inserting pipelining registers. 
d)   Using     a     more     power     efficient     numerical 

representation,  such  as  signed  magnitude  or  Gray code. 
Some  options  for  improving  the  efficiency  of  the 

arithmetic and logic resources within the data plane are: a)    Using dedicated, atomic, resources for computation. b)   
Pipelining arithmetic units. 

c)    Reduced resources for intra-word communication in arithmetic units, e.g. carry-chains or conditional flags. Reduction 
in the overhead of the configuration  logic for 

the data plane can be achieved by: 
a)   Configuring buses rather than individual wires. 
b)   Sharing   configuration   bits   across   larger   compute elements. 
c)  An overall reduction in total number of possible configurations and thus a reduction in the configuration state size. 
 

Making an architecture more coarse-grained means that computation is done via dedicated adders, multipliers, etc. rather 
than constructing such units from more primitive functional units such as a 4-LUT. While a dedicated arithmetic unit is 
guaranteed to be more efficient than one composed of 4-LUTs, finding a balance of dedicated resources  that  match  the  
flexibility  of  the  4-LUTs  is difficult, and the overhead of multiple dedicated resources could  easily outweigh the  individual 
advantages of  each resource. One common use for CGRAs is to accelerate the computationally intensive kernel(s) of a larger 
application. 

These kernels are typically inner loops of algorithms or a set of nested loops. Frequently, it is possible to pipeline these 
kernels, thus exploiting the application’s existing parallelism and increasing its performance. If the application domain of a 
CGRA is rich with pipelinable kernels then it is advantageous to have a general bias towards a specific flow of  computation and  
data  in  the  datapath and  to  include dedicated resources for pipelining in the interconnect. The control plane of a CGRA plays 
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a similar role  to the general purpose spatial computing fabric of an   FPGA. It is composed of bitwise logic and communication 
resources, is flexible and highly connected. Given these requirements, it is likely that the control plane’s architecture will be 
similar to a standard FPGA’s architecture. From a power efficiency standpoint, the control plane will perform similarly, and thus 
provide no advantage over a standard FPGA. However, the control plane will be only one portion of a CGRA making its 
contribution to the energy overhead smaller 
 

III.        CONTEXT ARCHITECTURE 
 

The configuration cache provides context words to the context register of each PE on each cycle-and continued in further 
cycles. From the context register, these context words configure the PEs. Fig. 2 shows an example of PE structure and context 
architecture for MorphoSys [2]. Thirty-two bit context word specifies the function for the ALU-multiplier, the inputs to be 
selected from MUX_A and MUX_B, the amount and direction of shift of the ALU output, and the register for storing the result 
as Fig. 2(a). Context architecture means organization of context word with several fields to control resources in a PE, as shown 
in Fig. 2(b). The context architectures of other CGRAs such as are similar to the case of MorphoSys although there is a wide 
variance in context width and kind of fields used by different functionality. For particular coarse-grained reconfigurable array, 
the performance improvement depends on the inherent parallelism of target applications. In many cases, the parallelism of an 
application is smaller than the number of processing element (PE) arrays. Accordingly, PE array shows lots of redundant PEs 
not used at runtime. 

If the configuration cache can provide only required bits 
(valid bits) of the context words to PE array at runtime, it is possible to reduce power consumption in configuration cache. The 
redundant bits of the context words can be set to disable and make these invalid at runtime. That way, one can achieve low-
power implementation of CGRA without performance degradation while context architecture dynamically supports both the 
cases at runtime: one case is uncompressed context word with full bit width and another case is compressed context word with 
setting unused part of configuration cache disabled. In order to support such a dynamic context compression, we propose a 
new context architecture and configuration cache structure in this paper. 

 
 

Figure. 3.1. PE structure and context architecture of MorphoSys. 
 (a) PE structure. (b) Context architecture. 

 
 

IV.        PROPOSED SYSTEM 
 

A.          Compressed ALU Architecture: 
In  order to  design and evaluate compressible context architecture, we propose a new context architecture design flow. 

This design starts from context architecture initialization, which is similar to the architecture specification stage of general 
CGRA design flow. 
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Figure 4.1. Compressed ALU Architecture 
 

If the configuration cache can provide only required bits (valid bits) of the context words to PE array at runtime, it is 
possible to reduce power consumption in configuration cache [3]. The redundant bits of the context words can be set to 
disable and make these invalid at runtime. That way, one can achieve low-power implementation of CGRA without 
performance degradation. One more method to reduce power is by dividing the ALU into two parts that’s in compressed 
and non-compressed method. The normally repeating instructions are executed in compressed mode and instructions that are 
frequently not used such as branching instructions are   executed in non-compressed mode. The normal instructions are add, 
sub etc are executed in compressed mode. 

 

 
 

Figure 4.2. Overall Block Diagram 
 

In compressed mode we use a carry look ahead adder for execution the normal instructions. The use of carry look ahead 
adder is helpful in increasing the speed and saving power than that of ripple carry adder. Also it reduces area than the ripple 
carry adder. 
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Figure 4.3 and4.4 Shows the output obtained using the logic based on the compressed ALU idea explained in this paper. 
 

 
 

Figure 4.4.Output 
 

 

V.          CONCLUSION 
 

Power reduction plays a prominent role as the scaling down of devices is in increasing phase.. In this paper, design 
modification is done based on architecture. We  are  compressing the  architecture in  each  instruction cycle from the  
decoding section of  the  processing of instructions.  The  exploration  flow  efficiently  rearranges PEs with reducing array 
size, and changes interconnection scheme to save area and power. In addition, we suggest the design  scheme  which  splits  
the  computational resources into two groups (primitive resources and critical resources). Primitive resources are replicated 
for each processing element of the reconfigurable array, whereas area-critical resources are shared among multiple basic PEs. 
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