

ISSN: 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 2914

Low Power Design of the Processer Based on
Architecture Modifications

M Jasmin

 Assistant Professor, Bharath University, Chennai-600073, India
ABSTRACT: In the recent era as the devices are shrinking down low power design methodologies are of greater
importance.A CGRA that is focused on data path computations for a particular application domain is a balancing act akin
to design an ASIC and a FPGA simultaneously. Narrowing the application domain significantly makes the design of the
CGRA very much like that of a programmable ASIC. Widening the application domain requires a more flexible data path
that requires more configurable over head and has less overall efficiency compared to an FPGA.So A reconfigurable
architecture is used with modified architecture in ALU arrays, there by reducing power. The Architecture presented is
replaceable to all processors including DSP processors .

KEYWORDS: Coarse-grained reconfigurable architecture (CGRA), cache, context architecture, low power

I. INTRODUCTION

An application specific architecture solution is too rigid, and a general purpose processor solution is too inefficient. Neither
general purpose processors nor application specific architectures are capable of satisfying the power and flexibility requirements
of future mobile devices. Instead, of framing algorithm suitable for machines,,machines are made suitable for the
algorithm. This is the area of reconfigurable computing systems.
This paper proposes a scheme of dynamic context Management aiming to minimize the reconfiguration overhead by reusing and
switching contexts [2]. The technique permits background loading of configuration data without interrupting the regular
execution. It prevents read/write operation for redundant part of context words dynamically and overlaps computation with
reconfiguration. Overhead encountered in reconfiguration can be reduced by means of switching if the next configuration is
present in one of the alternate contexts. In this paper, we address the power reduction issues in CGRA and provide a framework to
achieve this[4],[5]. A new design flow and a new configuration cache structure are presented to reduce power consumption in
configuration cache.
The power saving is achieved by dynamic context compression in the configuration cache—only required bits of the context
words are set to enable and by disabling the redundant bits. Therefore, the new design flow has been proposed to generate
architecture specifications that are
required for supporting dynamically compressible context architecture without performance degradation. The proposed CGRA
architecture has shown to reduce power consumption in configuration cache compared to conventional context architecture with
negligible area overhead

II. FINE GRAIN VS. COARSE GRAIN

Association of Field Programmable Gate Array (FPGA)-based system designs[1] is prominent in Reconfigurable processors.

 An FPGA consists of a matrix of programmable logic cells with a grid of interconnecting lines running between them. To
provide an interface between the FPGA, the interconnecting lines and the chip's external pins ,input and output pins are provided.
However, FPGAs tend to be somewhat fine-grained in order to achieve a high degree of flexibility. This flexibility has its
place for situations where the computational requirements are either not known in advance or vary considerably among the
needed applications. However, in many cases this extreme level of flexibility is unnecessary which is the cause for increase in
area, delay and power consumption.

Contrasted with FPGAs, the data-path width of coarse grained reconfigurable architectures is more than one bit. To improve

the efficiency of a system the reconfiguration used is coarse-grained and is performed within a processor or amongst
processors. In such systems the reconfigurable unit is a Specialized hardware architecture that supports logic reconfiguration. The
reconfiguration procedure is much faster than that found in FPGAs[8]. due to the faster design in data paths as application domains
are known and it is area-efficient. Typically, a CGRA consists of a main processor, reconfigurable array architecture
(RAA)[4][5], and their interface, as shown in Fig. 1.1. The RAA has identical PEs containing functional units and a few
storage units such as ALU, multiplier, shifter, and register file. Data to PE array is obtained from data buffer through a
high-bandwidth data bus. The configuration cache (or context memory) stores the context words used for configuring the PE

ISSN: 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 2915

array elements. The context register between a PE and a cache element (CE) in configuration cache is used to keep the cache
access path from being the critical path of the CGRA[7].

Figure 2.1 General block diagram of CGRA

A. Power Advantages In CGRA:
Studies of the power consumption within an FPGA, as shown that 50% to 60% of the energy of an FPGA is dissipated in

the routing fabric, 20% to 40% in the logic blocks and 5% to 40% in the clock network. Using these number as references, it
is infered that interconnect offers the greatest chance for energy optimization, followed by the logic blocks. One key aspect
in the transition from fine-grained to coarse-grained configurable architectures is the overhead associated with configuration
control logic.

Therefore, improvements in the CGRA will be measured indirectly at the system level. By abstracting the effects of a
given silicon manufacturing technology, custom layout, or even the specifics of implementing a power efficient arithmetic
unit we can focus on architectural features that
provide a significant power advantage. The primary source of architectural power efficiency is the transition from a bitwise
to word-wide datapath, which can be further refined
into categories for interconnect, arithmetic and logic, and configuration overhead.In the previous work the following
observations are made

The efficiency of the interconnect within the data plane are improved by the following ways:
a) Reducing the number of pair-wise routing options, i.e. connectivity.
b) Reducing interconnect switching complexity by

bundling wires into buses.
c) Reducing the average interconnect length by inserting pipelining registers.
d) Using a more power efficient numerical

representation, such as signed magnitude or Gray code.
Some options for improving the efficiency of the

arithmetic and logic resources within the data plane are: a) Using dedicated, atomic, resources for computation. b)
Pipelining arithmetic units.

c) Reduced resources for intra-word communication in arithmetic units, e.g. carry-chains or conditional flags. Reduction
in the overhead of the configuration logic for

the data plane can be achieved by:
a) Configuring buses rather than individual wires.
b) Sharing configuration bits across larger compute elements.
c) An overall reduction in total number of possible configurations and thus a reduction in the configuration state size.

Making an architecture more coarse-grained means that computation is done via dedicated adders, multipliers, etc. rather
than constructing such units from more primitive functional units such as a 4-LUT. While a dedicated arithmetic unit is
guaranteed to be more efficient than one composed of 4-LUTs, finding a balance of dedicated resources that match the
flexibility of the 4-LUTs is difficult, and the overhead of multiple dedicated resources could easily outweigh the individual
advantages of each resource. One common use for CGRAs is to accelerate the computationally intensive kernel(s) of a larger
application.

These kernels are typically inner loops of algorithms or a set of nested loops. Frequently, it is possible to pipeline these
kernels, thus exploiting the application’s existing parallelism and increasing its performance. If the application domain of a
CGRA is rich with pipelinable kernels then it is advantageous to have a general bias towards a specific flow of computation and
data in the datapath and to include dedicated resources for pipelining in the interconnect. The control plane of a CGRA plays

ISSN: 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 2916

a similar role to the general purpose spatial computing fabric of an FPGA. It is composed of bitwise logic and communication
resources, is flexible and highly connected. Given these requirements, it is likely that the control plane’s architecture will be
similar to a standard FPGA’s architecture. From a power efficiency standpoint, the control plane will perform similarly, and thus
provide no advantage over a standard FPGA. However, the control plane will be only one portion of a CGRA making its
contribution to the energy overhead smaller

III. CONTEXT ARCHITECTURE

The configuration cache provides context words to the context register of each PE on each cycle-and continued in further
cycles. From the context register, these context words configure the PEs. Fig. 2 shows an example of PE structure and context
architecture for MorphoSys [2]. Thirty-two bit context word specifies the function for the ALU-multiplier, the inputs to be
selected from MUX_A and MUX_B, the amount and direction of shift of the ALU output, and the register for storing the result
as Fig. 2(a). Context architecture means organization of context word with several fields to control resources in a PE, as shown
in Fig. 2(b). The context architectures of other CGRAs such as are similar to the case of MorphoSys although there is a wide
variance in context width and kind of fields used by different functionality. For particular coarse-grained reconfigurable array,
the performance improvement depends on the inherent parallelism of target applications. In many cases, the parallelism of an
application is smaller than the number of processing element (PE) arrays. Accordingly, PE array shows lots of redundant PEs
not used at runtime.

If the configuration cache can provide only required bits
(valid bits) of the context words to PE array at runtime, it is possible to reduce power consumption in configuration cache. The
redundant bits of the context words can be set to disable and make these invalid at runtime. That way, one can achieve low-
power implementation of CGRA without performance degradation while context architecture dynamically supports both the
cases at runtime: one case is uncompressed context word with full bit width and another case is compressed context word with
setting unused part of configuration cache disabled. In order to support such a dynamic context compression, we propose a
new context architecture and configuration cache structure in this paper.

Figure. 3.1. PE structure and context architecture of MorphoSys.
 (a) PE structure. (b) Context architecture.

IV. PROPOSED SYSTEM

A. Compressed ALU Architecture:
In order to design and evaluate compressible context architecture, we propose a new context architecture design flow.

This design starts from context architecture initialization, which is similar to the architecture specification stage of general
CGRA design flow.

ISSN: 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 2917

Figure 4.1. Compressed ALU Architecture

If the configuration cache can provide only required bits (valid bits) of the context words to PE array at runtime, it is
possible to reduce power consumption in configuration cache [3]. The redundant bits of the context words can be set to
disable and make these invalid at runtime. That way, one can achieve low-power implementation of CGRA without
performance degradation. One more method to reduce power is by dividing the ALU into two parts that’s in compressed
and non-compressed method. The normally repeating instructions are executed in compressed mode and instructions that are
frequently not used such as branching instructions are executed in non-compressed mode. The normal instructions are add,
sub etc are executed in compressed mode.

Figure 4.2. Overall Block Diagram

In compressed mode we use a carry look ahead adder for execution the normal instructions. The use of carry look ahead
adder is helpful in increasing the speed and saving power than that of ripple carry adder. Also it reduces area than the ripple
carry adder.

ISSN: 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 2918

Figure 4.3 and4.4 Shows the output obtained using the logic based on the compressed ALU idea explained in this paper.

Figure 4.4.Output

V. CONCLUSION

Power reduction plays a prominent role as the scaling down of devices is in increasing phase.. In this paper, design
modification is done based on architecture. We are compressing the architecture in each instruction cycle from the
decoding section of the processing of instructions. The exploration flow efficiently rearranges PEs with reducing array
size, and changes interconnection scheme to save area and power. In addition, we suggest the design scheme which splits
the computational resources into two groups (primitive resources and critical resources). Primitive resources are replicated
for each processing element of the reconfigurable array, whereas area-critical resources are shared among multiple basic PEs.

REFERENCES

[1]. H. Reiner, “A decade of reconfigurable computing: A visionaryretrospective,” in Proc. Des. Autom. Test Eur.

Conf., Mar. 2001, pp. 642–649.
[2]. H. Reiner, M. Herz, T. Hoffmann, and U. Nageldinger, “KressArrayXplorer: A new CAD environment to

optimize reconfigurable datapath array architectures,” in Proc. Asia South Pacific Des. Autom. Conf., Jan. 2000,
pp. 163–168.

[3]. B. Mei, S. Vernalde, D. Verkest, and R. Lauwereins, “Design methodology for a tightly
coupled

ISSN: 2278 – 8875

 International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
 Vol. 2, Issue 7, July 2013

Copyright to IJAREEIE www.ijareeie.com 2919

VLIW/reconfigurable matrix architecture: A case study,” in Proc. Des. Autom. Test Eur. Conf., Mar. 2004, pp.
1224–1229.

[4]. N. Bansal, S. Gupta, N. Dutt, and A. Nicolau, “Analysis of the performance of coarse-grain reconfigurable
architectures with different processing element configurations,” presented at theWorkshop Appl. Specific Processors,
San Diego, CA, Dec. 2003.

[5]. A. Lambrechts, P. Raghavan, and M. Jayapala, “Energy- aware interconnect- exploration of coarse-grained
reconfigurable processors,” presented at the Workshop Appl. Specific Processors, New York, Sep.2005.

[6]. R.Hartenstein. A decade of reconfigurable computing: A visionary retrospective. In Proc. DATE, pages 642-
649, 2001.
[7]. Hideharu Amano, Yohei Hasegawa, Satoshi Tsutsumi "MuCCRA chips: Configurable Dynamically-

Reconfigurable Processors" IEEE Asian Solid-State Circuits Conference November 12-14,2007 / Jeju, Korea [3]
Sudang Yu, LeibaLiu,"Automatic Contexts Switch in Loop Pipeline for Embedded Coarse-grained Reconfigurable
Processor" Communications, Circuits and Systems, 2008, ICCCAS 2008, International Conference.

[8]. F.Veredas,M.Scheppler,W.Moffat, and B.Mei, "Custom Implementation of the Coarse-Grained Reconfigurable
ADRES Architecture for Multimedia Purposes," in Proc. Of FPL, Aug. 2005, pp. 106-111.

