

International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 11, November 2014

Lowener, Star and "\theta" Partial Ordering of S-Unitary Matrices

A. Govindarasu

Associate Professor, Dept. of Mathematics, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai, Tamilnadu, India

ABSTRACT: Some results relating to ' θ ' partial ordering on s-unitary matrices are given. Theorems relating to Lowener, Star and ' θ ' partial ordering on s-unitary matrices are obtained. Further ' θ ' partial ordering preserved under s-unitary similarity has been proved.

MATHEMATICS SUBJECT CLASSIFICATION: 15A45,15B57,15A09

KEYWORDS: Lowener partial ordering, Partial ordering, Star partial ordering, s-unitary matrix s-unitary similarity, ' θ ' partial ordering.

I. INTRODUCTION

Some characterizations of the star partial ordering and rank subtractivity for matrices was discussed by Hartwig and Styan in [3]. Jurgen Grob observed some remarks on partial ordering of Hermitian Matrices in [5]. Xifu Liu and Hu yang discussed some results on the partial ordering of block matrices[8]. In [4], Jorma K. Merikoski and Xiaogi Liu have developed star partial ordering on Normal Matrices . Krishnamoorthy and Govindarasu introduced the concept of θ ' partial ordering [7].

II. PRELIMINARIES AND NOTATIONS:

Let C_{nxn} be the space of nxn complex matrices of order n. For $A \in C_{nxn}$ let A^T , A^* , A^S , A^S , A^S (= A^θ) denote transpose, conjugate, conjugate transpose, secondary transpose, conjugate secondary transpose of a matrix A respectively. Anna Lee[1] has initiated the study of secondary symmetric matrices. Also she has shown that for a complex matrix A, the usual transpose A^T and secondary transpose A^S are related as $A^S = VA^TV$ where V is the associated permutation matrix whose elements on the secondary diagonal are 1 and other elements are zero. Also \overline{A}^S denotes the conjugate secondary transpose of A i.e. $\overline{A}^S = (c_{ij})$ where

 $c_{ij} = \overline{a_{n-j+1, n-i+1}}$ [2] and $\overline{A}^S = V\overline{A}^*V = A^\theta$. Also 'V' satisfies the following properties. $V^T = V^\theta = \overline{V} = V^* = V$ and $V^2 = I$.

A matrix $A \in C_{nxn}$ is said to be s-unitary if $A^{\theta}A = AA^{\theta} = I$ [6].

Definition 2.1: [Lowener Partial Ordering]

For
$$A, B \in C_{nxn}$$
, we define $A = B$ if $A - B \ge 0$

International Journal of Innovative Research in Science, **Engineering and Technology**

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 11, November 2014

Definition 2.2: [Star Partial Ordering]

For
$$A, B \in C_{n\times n}$$
, we define $A \stackrel{>}{\underset{*}{=}} B$ if $B^*B = B^*A$ and $BB^* = AB^*$

III.LOWENER, STAR AND "θ" PARTIAL ORDERING OF S-UNITARY MATRICES

Definition 3.1 [' θ ' PARTIAL ORDERING] [7]

Let
$$A, B \in C_{nxn}$$
, $A = B$ iff $A^{\theta}A = A^{\theta}B$ and $AA^{\theta} = BA^{\theta}$.

Theorem 3.2

Let
$$VA = AV$$
 If A is s-unitary then A is unitary.

Proof:

Let
$$VA = AV$$

$$\Rightarrow (VA)^{\theta}VA = (VA)^{\theta}AV$$
 [By Definition 3.1]

$$\Rightarrow A^{\theta}VVA = A^{\theta}VAV$$

$$\Rightarrow A^{\theta}A = A^{\theta}VAV$$

$$\Rightarrow I = A^{\theta}VAV = VA^{*}VVAV$$
 [Since A is s-unitary]

$$\Rightarrow I = VA^{*}AV$$

$$\Rightarrow VIV = A^{*}A$$

$$\Rightarrow I = A^{*}A \qquad(3.2.1)$$

$$VA = AV \Rightarrow VA(VA)^{\theta} = AV(VA)^{\theta}$$
 [By definition 4.3.1]

$$\Rightarrow VAA^{\theta}V = AVA^{\theta}V$$
 [Since A is s-unitary]

$$\Rightarrow VIV = AVVA^{*}VV$$

$$\Rightarrow I = AA^{*}$$

Therefore $A^*A = I$ -----(3.2.2)

From (3.2.1) and (3.2.2) we have $A^*A = AA^* = I$ Therefore A is unitary.

Theorem 3.3

If A and B are s-unitary matrices and
$$AV = VA$$
, $VB = BV$ then $A \stackrel{<}{\underset{B}{=}} B \Rightarrow AV \stackrel{<}{\underset{*}{=}} BV$

Proof:

Given
$$A \stackrel{<}{-} B$$

Copyright to IJIRSET www.ijirset.com 17336

International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 11, November 2014

$$A \stackrel{<}{-} B \Rightarrow A^{\theta} A = A^{\theta} B$$
 and $AA^{\theta} = BA^{\theta}$ [By Definition.3.1]

By definition
$$A^{\theta}A = A^{\theta}B$$

$$\Rightarrow VA^*VA = VA^*VB$$

[Since *A* is s-unitary]

$$\Rightarrow (AV)^* VA = (AV)^* VB$$

$$\Rightarrow (AV)^*AV = (AV)^*BV$$
 -----(3.3.1)

[Since AV = VA, VB = BV]

By definition $AA^{\theta} = BA^{\theta}$

$$\Rightarrow AVA^*V = BVA^*V$$

[Since *A* is s-unitary]

Premultiplying and postmultiplying the above equation by V we get,

$$\Rightarrow VAVA^*VV = VBVA^*VV$$

$$\Rightarrow VAVA^* = VBVA^*$$

[Since
$$V^2 = I$$

$$\Rightarrow VA(AV)^* = VB(AV)^*$$

$$\Rightarrow AV(AV)^* = BV(AV)^*$$
 -----(3.3.2)

[Since
$$AV = VA, VB = BV$$
]

From (3.3.1.) and (3.3.2) we have AV = BV.

Therefore
$$A \stackrel{<}{\underset{\theta}{-}} B \Rightarrow AV \stackrel{<}{\underset{*}{-}} BV$$
.

Theorem 3.4

If A and B are s-unitary matrices and AV = VA, VB = BV then $A \stackrel{<}{-} B \Rightarrow AV \stackrel{<}{-} BV$.

Proof: $A \stackrel{<}{\underset{*}{=}} B \Rightarrow A^*A = A^*B$ and $AA^* = BA^*$

Take
$$A^*A = A^*B$$

$$\Rightarrow (VA^*V)VA = (VA^*V)VB$$

$$\Rightarrow A^{\theta}VA = A^{\theta}VB$$

[Since A is s-unitary]

$$\Rightarrow VA^{\theta}VA = VA^{\theta}VB$$

$$\Rightarrow (AV)^{\theta} VA = (AV)^{\theta} VB$$

Take $AA^* = BA^*$

$$\Rightarrow AVVA^* = BVVA^*$$

$$\Rightarrow AV(VA^*V) = BV(VA^*V)$$

$$\Rightarrow AV(A^{\theta}) = BV(A^{\theta})$$

[Since A is s-unitary]

International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 11, November 2014

From (3.4.1) and (3.4.2) we get AV = BV. Therefore $A = B \Rightarrow AV = BV$

Theorem 3.5

If
$$VA \stackrel{<}{=} VB$$
 and $VA \stackrel{<}{=} VB$ then $VA = VB$.

Proof:

Given
$$VA = VB$$

$$VA \stackrel{<}{\underset{\theta}{-}} VB \Rightarrow (VA)^{\theta} VA = (VA)^{\theta} VB$$
, and $VA(VA)^{\theta} = VB(VA)^{\theta}$,

Given
$$VA \stackrel{<}{\underset{\theta}{\sim}} VB \Rightarrow (VA)^{\theta} VA = (VA)^{\theta} VB$$

$$\Rightarrow$$
 $(VA)^{\theta}(VB-VA) = 0$ -----(3.5.1)

Taking conjugate secondary transpose on both sides of (3.5.1) we get

$$(VB - VA)^{\theta}(VA) = 0$$

Since
$$VA \stackrel{<}{-} VB$$
 we have $(VB - VA)^*VB = V(VB - VA)V$

$$(3.5.1) \Rightarrow VV(VB - VA)^*VVA = 0$$

$$\Rightarrow VV(VB - VA)VVVA = 0$$

$$\Rightarrow I(VB - VA)IVA = 0$$

$$\Rightarrow VBVA - (VA)^2 = 0$$

$$\Rightarrow (VB - VA)VA = 0$$

$$\Rightarrow VBVA = (VA)^2$$

$$\Rightarrow VBVA = (VA)^2$$

$$\Rightarrow VB = VA \text{ Hence the theorem, is proved by this paper.}$$

Theorem 3.6

For $A, B \in C_{nxn}$ and V is the permutation matrix with units in the secondary diagonal.

$$A \stackrel{<}{-} B \Leftrightarrow VA \stackrel{<}{-} VB \Leftrightarrow AV \stackrel{<}{-} BV$$

Proof:
$$A \stackrel{<}{=} B \Leftrightarrow A^{\theta} A = A^{\theta} B$$
 and $AA^{\theta} = BA^{\theta}$ [By Definition 3.1] $\Leftrightarrow A^{\theta} VVA = A^{\theta} VVB$ and $VAA^{\theta} V = VBA^{\theta} V$

International Journal of Innovative Research in Science, **Engineering and Technology**

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 11, November 2014

$$\Leftrightarrow (VA)^{\theta}VA = (VA)^{\theta}VB$$
 and $VA(VA)^{\theta} = VB(VA)^{\theta}$

Therefore
$$A \stackrel{<}{\theta} B \Leftrightarrow VA \stackrel{<}{\theta} VB$$

Similarly we can prove $A \stackrel{<}{\underset{o}{=}} B \Leftrightarrow AV \stackrel{<}{\underset{o}{=}} BV$

Hence
$$A \stackrel{<}{-} B \Leftrightarrow VA \stackrel{<}{-} VB \Leftrightarrow AV \stackrel{<}{-} BV$$

Theorem 3.7

Let $A, B \in C_{nyn}$... ' θ 'partial ordering is preserved under s-unitary similarity.

It is enough to prove $A \stackrel{<}{\underset{\theta}{=}} B \Leftrightarrow VP^{-1}VAP \stackrel{<}{\underset{\theta}{=}} VP^{-1}VBP$ for some s-unitary matrix P

$$A \stackrel{<}{\underset{\Theta}{-}} B \Rightarrow VA \stackrel{<}{\underset{\Theta}{-}} VB$$

$$\Leftrightarrow P^{\theta}VAP \stackrel{<}{\underset{\theta}{-}} P^{\theta}VBP$$

$$\Leftrightarrow VP^{\theta}VAP \stackrel{<}{\underset{\theta}{\sim}} VP^{\theta}VBP$$

$$\Leftrightarrow (VP^{-1}V)AP \stackrel{<}{\underset{\theta}{-}} (VP^{-1}V)BP$$

$$\Leftrightarrow C \stackrel{<}{=} D$$
 where $C = (VP^{-1}V)AP$ and $D = (VP^{-1}V)BP$

Threrefore ' θ ' partial ordering is preserved under s-unitary similarity

IV.CONCLUSION

Results relating to 'θ' partial ordering on s-unitary matrices are discussed. Relation between Lowener, Star and 'θ' partial ordering on s-unitary matrices are derived. Also shown '\theta' partial ordering preserved under s-unitary similarity. This concept may be applied to any other matrices.

REFERENCES

DOI: 10.15680/IJIRSET.2014.0311035 Copyright to IJIRSET www.ijirset.com 17339

^{[1].} Anna Lee ""Secondary symmetric, secondary skew symmetric secondary orthogonal matrices", Period. Math. Hungary ,Vol.7 pp 63-70,

^{[2].}Anna Lee., "On s -symmetric, s-skew symmetric and s-orthogonal matrices", Period Math. Hungary Vol 7, pp 71–76, 1976.
[3].Hartwig.R.E and Styan.G.P.H., "On some characterization of the star partial ordering for matrices and rank subtractivity", Lin.Alg.Appl., Vol 82, pp145-161, 1986.

^{[4].}Jorma.K.Merikoski and Xiaoji Liu ., "On the star partial ordering of normal matrices", Journal of inequalities in Pure and Applied Mathematics, Vol 7, issue 7, Art 17,2006.

^{[5].}Jurgen Grob., "Some remarks on partial ordering on hermitian matrices", Linear and Multilinear algebra, 42, pp53-60. 1997

^{[6].}Krishnamoorthy.S and Govindarasu. A ., Matrices", International Journal of computational science and "On secondary unitary Mathematics . Vol 2 number 3, pp 247- 253 2010.

^{[7].}Krishnamoorthy,S and Govindarasu .A, "On the "b" partial ordering of s-unitary matrices", "International Journal of Mathematical Archive" 2(12), pp 2534-2537, ISSN 2229-5046, 2011.

^[8] Liu and yang ., "Some results on the partial ordering of block matrices" College of Mathematics and Statistics, Choquings University 401331 ,China 2011.

International Journal of Innovative Research in Science, Engineering and Technology

(An ISO 3297: 2007 Certified Organization)

Vol. 3, Issue 11, November 2014

BIOGRAPHY

I, **Dr.A.Govindarasu** presently working as Associate professor in Mathematics at A.V.C.College(Autonomous),Mannampandal, Mayiladuthurai.I have 28 years of teaching experience tilldate.I had specialized in Linear Algebra, Graph Theory, Differential Equations, Integral equations. I did my Ph.D on "CONTRIBUTIONS TO THE STUDY ON S-UNITARY MATRICES". To my credit I have published five international papers. I also served as coordinator at A.V.C.College(Autonomous), for Earn-While-Learn Scheme of Bharathidasan University and presently holding additional post of Assistant Controller of Examinations at A.V.C.College(Autonomous), Mayiladuthurai.

