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ABSTRACT: Finite Impulse Response (FIR) filters based on Distributed-Arithmetic widely used and known for its 

efficient memory based implementation where filter outputs are computed by inner product of input sample vectors and 

filter coefficients. The main aim of this paper revolves around efficient design of FIR filter to overcome Distributed-

Arithmetical approach for multipliers used in Fir filters.  In this paper we are going to show that Look-up Table (LUT) 

multiplier based approach could be area efficient alternative to Distributed-Arithmetic based design of FIR filter with 

the same efficiency implementation. 
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 I. INTRODUCTION 

  

Finite impulse response (FIR) digital filter is widely used as a basic tool in various signal processing and image 

processing applications [1]. In which key components are multipliers. FIR filters performance is measured by the 

performance of multipliers, because multipliers are generally slowest components in the system. Furthermore, it is the 

most area consuming element.  Hence one of the major design issues is optimizing area of the multiplier. Thus memory 

based multipliers are more efficient for designing of FIR filters, which requires less area and consumes less area than 

non memory based multipliers.   

Interestingly also, the concept of memory as a stand-alone subsystem in a general purpose machine is being replaced by 

embedded memories those are integrated as part within the processor chip to derive much higher bandwidth between a 

processing unit and a memory macro with much lower power consumption [2]. To achieve overall enhancement in 

performance of computing systems and to minimize the bandwidth requirement, access-delay and power dissipation, 

either the processor has been moved to memory or the memory has been moved to processor in order to place the 

computing-logic and memory elements at closest proximity to each other [3] 

  

Fig. 1. Trend of transistor density in logic elements and SRAM. 
Multipliers based on memory are used more often than multiply-accumulate structures due to many advantages they 

posses; e.g. greater potential for high-throughput and reduced-latency implementation as memory access time is much 
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less than the required for multiplication. The dynamic power consumption is also less due to less switching activities 

for memory read operation compared to conventional multipliers. 

There are mainly two types of memory based design of FIR filters. First one is Distributed Arithmetic for Inner 

product computation and second one is Look-Up table based multiplication for inner product computation where 

memory size is reduced to nearly half of the first one.            

 II. DISTRIBUTED  ARITHMETIC MEMORY BASED MULTIPLICATION  

 

DA is basically (but not necessarily) a bit-serial computational operation that forms an inner (dot) product (multiply 

and accumulation) of a pair of vectors in a single direct step. In the DA-based approach, an LUT is used to store all 

possible values of inner-products of a fixed N -point vector with any possible N-point bit-vector. If the inner-products 

are implemented in a straight-forward way, the memory-size of DA based implementation in-creases exponentially 

with the inner-product-length. Attempts have been made to reduce the memory-space in DA-based architectures for 

reducing the memory-size of DA-based implementation of FIR filter. But, it is observed that the reduction of memory-

size achieved by such de-composition is accompanied by increase in latency as well as the number of adders and 

latches. The above Fig. 1 shows the Distributed arithmetic multiplier. [4] 

 
Fig 1.Conventional Memory-Based Multiplier. 

 

 III. LUT DESIGN FOR MEMORY-BASED MULTIPLICATION 

 

The basic principle of memory-based multiplication is depicted in Fig.1. Let A be a fixed coefficient and X be an 

input word to be multiplied with A. Assuming X to be an unsigned binary number of word-length L, there can be 2L 

possible values of X, and accordingly, there can be 2L possible values of product C = A ·  X. Therefore, for the 

conventional implementation of memory-based multiplication [6], a memory unit of 2L words is required to be used as 

look-up-table consisting of pre-computed product values corresponding to all possible values of X. The product-word 

(A · Xi), for 0 ≤ Xi ≤ 2L − 1, is stored at the memory location whose address is the same as the binary value of Xi, such 
that if L-bit binary value of Xi is used as address for the memory-unit, then the corresponding product value is read-out 

from the  memory. Although 2L possible values of X correspond to 2L possible values of C = A ·  X, recently we have 

shown that only (2L/2) words corresponding to the odd multiples of A may  
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TABLE 1 

LUT WORDS AND PRODUCT VALUES FOR INPUT WORD LENGTH L = 4 

 

 
Fig. 3. Proposed LUT design for multiplication of W-bit fixed coefficient, A and 4-bit input 

operand, X = x3 x2 x1 x0. The proposed LUT-based multiplier. (b) The 4-to-3 bits input 

encoder. (c) Control circuit. (d) Two-stage logarithmic barrel-shifter for W = 4. (e) Structure 

of the NOR-cell. 
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only be stored in the LUT [7]. One of the possible product words is zero, while all the rest (2L/2)−1 are even 
multiples of A which could be derived by left-shift operations of one of the odd multiples of A. We illustrate this in 

Table I for L = 4. At eight memory locations, eight odd multiples A × (2i + 1) are stored as Pi for i = 0, 1, 2, · ·  · , 7. 

The even multiples 2A, 4A and 8A are derived by left-shift operations of A. Similarly, 6A and 12A are derived by left-

shifting 3A, while 10A and 14A are derived by left-shifting 5A and 7A, respectively. The address X = (0 0 0 0) 

corresponds to (A ·  X) = 0, which can be obtained by resetting the LUT output. For an input multiplicand of word-size 

L similarly, only (2L/2) odd multiple values need to be stored in the memory-core of the LUT, while the other (2L/2−1) 
non-zero values could be derived by left-shift operations of the stored values. Based on the above, an LUT for the 

multiplication of an L-bit input with W-bit coefficient is designed by the following strategy: 

• A memory-unit of (2L/2) words of (W + L)-bit width 

is used to store all the odd multiples of A. 

• A barrel-shifter for producing a maximum of (L − 1) 
left-shifts is used to derive all the even multiples of A. 

• The L-bit input word is mapped to (L − 1)-bit LUT address 

by an encoder. 

• The control-bits for the barrel-shifter are derived by a 

control-circuit to perform the necessary shifts of the LUT output. Besides, a RESET signal is generated by the same 

control circuit to reset the LUT output when X = 0. 

 IV. PROPOSED LUT-BASED MULTIPLIER FOR 4-BIT INPUT 

 

The proposed LUT-based multiplier for input word-size L = 4 is shown in Fig.3. It consists of a memory-array of 

eight words of (W +4)-bit width and a 3-to-8 line address decoder, along with a NOR-cell, a barrel-shifter, a 4-to-3 bit 

encoder to map the 4-bit input operand to 3-bit LUT-address, and a control circuit for generating the control-word (s0 

s1) for the barrel-shifter, and the RESET signal for the NOR-cell. The 4-to-3 bit input encoder is shown in Fig.3(b). It 

receives a four-bit input word (x3 x2 x1 x0) and maps that onto the three-bit address word (d2 d1 d0), according to the 

logical relations: 

d0 = (x0 ·  x1) · (x1 ·  x2) · (x0 + (x2 ·  x3)                         (1a) 

d1 = (x0 ·  x2) · (x0 + (x1 · x3))                                    (1b) 

d2 = x0 · x3                                                                  (1c) 

 
The pre-computed values of A × (2i + 1) are stored as Pi for i = 0, 1, 2, ·· · , 7 at 8 consecutive locations of the 

memory array as specified in Table I in bit-inverted form. The decoder takes the 3-bit address from the input encoder, 

and generates 8 word-select signals, {wi, for 0 ≤ i ≤ 7}, to select the referenced-word from the memory-array. The 

output of the memory-array is either AX or its sub-multiple in bit-inverted form depending on the value of X. From 

Table I, we find that the LUT output is required to be shifted through 1 location to left when the input operand X is one 

of the values {(0 0 1 0), (0 1 1 0), (1 0 1 0), (1 1 1 0)}. Two left-shifts are required if X is either (0 1 0 0) or (1 1 0 0). 

Only when the input word X = (1 0 0 0), three shifts are required. For all other possible input operands, no shifts are 

required. Since the maximum number of left-shifts required on the stored-word is three, a two-stage logarithmic barrel-
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shifter is adequate to perform the necessary left-shift operations. [5] 

 
Fig.4 Memory-based multiplier using dual-port memory-array. Q = (W + 4). 

 
The number of shifts required to be performed on the output of the LUT and the control-bits s0 and s1 for different 

values of X are shown Table I. The control circuit [shown in Fig.3(c)] accordingly generates the control-bits given by  

s0 = x0 + (x1 + x2) (2a) 

s1 = (x0 + x1) (2b) 

A logarithmic barrel-shifter for W = L = 4 is shown in Fig.3(d). It consists of two stages of 2-to-1 line bit-level 

multiplexors with inverted output, where each of the two stages involves (W + 4) number of 2-input AND-OR-

INVERT (AOI) gates. The control-bits (s0, ¯ s0) and (s1, ¯ s1) are fed to the AOI gates of stage-1 and stage-2 of the 

barrel-shifter, respectively. Since each stage of the AOI gates perform inverted multiplexing, after two stages of 

inverted multiplexing, outputs with desired number of shifts are produced by the barrel-shifter in (the usual) un-

inverted form. The input X = (0 0 0 0) corresponds to multiplication by X = 0 which results in the product value A ·  X 

= 0. Therefore, when the input operand word X = (0 0 0 0), the output of the LUT is required to be reset. The reset 

function is implemented by a NOR-cell consisting of (W + 4) NOR gates as shown in Fig.3(e) using an active-high 

RESET. The RESET bit is fed as one of the inputs of all those NOR gates, and the other input lines of (W +4) NOR 

gates of NOR cell are fed with (W + 4) bits of LUT output in parallel. When X = (0 0 0 0), the control circuit in 

Fig.3(c), generates an active-high RESET according to the logic expression:  

RESET = (x0 + x1) ·  (x2 + x3) (3) 

When RESET=1, the outputs of all the NOR gates become 0, so that the barrel-shifter is fed with (W + 4) number of 

zeros. When RESET=0, the outputs of all the NOR gates become the complement of the LUT output-bits. Note that, 

keeping this in view, the product values are stored in the LUT bit-inverted form. Reset function can be implemented by 

an array of 2-input AND gates in a straight-forward way, but the 
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TABLE II 

COMPLEXITIES OF LUT-BASED MULTIPLIERS FOR L =4 

 
 

implementation of reset by the NOR-cell is preferable since the NOR gates have simpler CMOS implementation 

compared with the AND gates. Moreover, instead of using a separate NOR-cell, the NOR gates could be integrated 

with memory array if the LUT is implemented by a ROM [8], [9]. The NOR cells, therefore, could be eliminated by 

using a ROM of 9 words, where the 9th word is zero and RESET is used as its word-select signal. To compare the area 

of the proposed LUT-multiplier and the existing LUT-multiplier, we have synthesized the multipliers for L = 4 for 

different coefficient width W by Synopsys Design Compiler [10] using TSMC 90nm library and listed in Table II. Both 

the designs have nearly the same data arrival time, but the proposed LUT design is found to offer a saving of nearly 

23% of area over the conventional design. The saving in proposed LUT design resulting from lower storage and less 

decoder complexity is reduced mainly due to the overhead of barrel-shifter and NOR cells (indicated in Table II). 

Multiplication of an 8-bit input with a W-bit fixed coefficient can be performed through a pair of multiplications using 

a dual-port memory of 8 words (or two single-port memory units) along with a pair of decoders, encoders, NOR cells 

and barrel-shifters as shown in Fig.4. The shift-adder performs left shift operation of the output of the barrel-shifter 

corresponding to more significant half of input by four bit-locations, and adds that to the output of the other barrel-

shifter. In the next subsection, we present two other optimization schemes which has been proposed recently for 

reduction of storage size of LUT multipliers [11]. 
 

 V. CONCLUSION 

 

The proposed architecture for multipliers using Look-up table approach for multiplication requires half of the 

memory compared to the conventional LUT multipliers with same throughput for 4 bit address. The size of LUT is 

reduced by using Tow-stage logarithmic barrel-shifter and (W+4) number of NOR gates, where W is the word length of 

fixed multiplying coefficients. The proposed LUT multiplier based design requires half the memory compared to DA-

based and conventional LUT based designs at the cost of approximately 4NW AOI gates and nearly 2NW NAND/NOR 

gates. Therefore FIR filter design based on proposed LUT architecture could be more efficient than DA-based approach 

in terms of area complexity for a given throughput and lower latency of implementation. Further work is required to 

find other possibilities of LUT optimization with different address size for better memory utilization. 
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