
 ISSN (Online) : 2319 - 8753

 ISSN (Print) : 2347 - 6710

 International Journal of Innovative Research in Science, Engineering and Technology

 Volume 3, Special Issue 3, March 2014

 2014 International Conference on Innovations in Engineering and Technology (ICIET’14)

 On 21st&22ndMarch, Organized by

 K.L.N. College of Engineering, Madurai, Tamil Nadu, India

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1866

Abstract— Frequent Pattern Mining plays an important

role in the field of data mining community today. The

concept of frequent pattern mining can be extended to

dynamic databases and data streams. A data stream

represents a massive input data that arrives at high speed

and is unbounded. There are various data processing

models in data streams. The challenge in frequent pattern

mining is the presence of null transactions. Null

transaction is a transaction that does not contain any

itemset being examined. Most of the existing streaming

algorithms did not consider the overhead of null

transactions. Hence, they fail to discover the frequent

patterns faster and occupy lot of memory space to

represent frequent items. To overcome this issue, a new

algorithm called Screening of Null Transactions-Frequent

Pattern Mining over Data Streams (SNT-FPMoDS) has

been proposed which extracts frequent patterns using

landmark and sliding window models. Experimental

results using real datasets on different models show that

our proposed algorithm saves lot of computation time and

memory.

Keywords— Data Stream, Landmark Window Model,

Sliding Window Model

I. INTRODUCTION

Data Mining is used to discover the patterns from huge

databases. In the knowledge discovery process, frequent

pattern mining [3] is one of the fundamental and

interesting problems [10] to find the frequent patterns

within the dataset. The problem of frequent pattern

mining is not limited to static databases and also extended

to dynamic databases [9] and data streams.

data stream is a massive input data that arrives at high

speed and is unbounded. Examples of data stream include

telecommunication, sensors, stock market analysis, web

click streams data, etc. In data streams, concept change is

one of the important phenomena because data is not static

here. So, whenever a significant change occurs, it may

require more memory and processing power and it may

produce inaccurate results.

There are three data processing models [7] namely

Landmark Model, Damped Model or Time Fading Model,

Sliding Window Model. Landmark Model extracts the

frequent patterns over the entire history of data streams.

Time Fading Model or Damped Model brings the

frequent patterns with respect to time or based on the

weight assigned to each transaction. Sliding Window

Model processes only the recent transactions and gives the

recent frequent patterns in the result. One of the three

models should be chosen for stream mining process based

upon the application selected.

In addition to that, a single item in a transaction does

not give any association for pattern mining. This

transaction is known as null transaction. The performance

degrades due to the presence of null transactions in a

dataset.

Main Contribution of this paper is depicted as follows.

The major work is to mine the frequent patterns over data

streams using different models. A new algorithm called

SNT-FPMoDS (Screening of Null Transactions-Frequent

Pattern Mining over Data Streams) has been proposed and

it was implemented using Landmark and Sliding Window

models. Screening of null transactions contributes towards

the reduction in number of frequent patterns, memory

storage and executing time.

Mining Frequent Patterns with Screening of

Null Transactions Using Different Models
B.Subbulakshmi, A. Periya Nayaki, Dr. C. Deisy

Assistant Professor, Dept of Computer Science & Engineering, Thiagarajar College of Engineering, Madurai. Tamil

Nadu, India.

PG Student, Dept of Computer Science & Engineering, Thiagarajar College of Engineering, Madurai. Tamil Nadu,

India.

Associate Professor, Dept of Computer Science & Engineering, Thiagarajar College of Engineering, Madurai, Tamil

Nadu, India.

Mining Frequent Patterns with Screening of Null Transactions using different models

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1867

II. RELATED WORKS

In 2002 [2], Manku and Motwani proposed an

algorithm called lossy counting for frequent items mining

and then extended it for frequent itemset mining. In this

work, all frequent itemsets are outputted with an error

bound and there are no false negatives in their result. In

2004, Chris Gianella et al. [5] proposed a new algorithm

using tilted time window model to mine the complete set

of frequent patterns over data streams. In 2004, Li and

Lee [4] proposed an algorithm called DSM-FI for

approximate mining of frequent itemsets over an entire

history of data streams. Here, lots of tree traversals are

required to collect the frequency information. In 2006,

Leung et al. [8] proposed an algorithm called DSTree,

prefix tree based data structure is used to maintain recent

frequent patterns. Here, Sliding window model is used to

mine the complete set of recent frequent patterns. Each

node of prefix tree contains the transaction information. In

2008, Mozafari et al. [11] proposed an algorithm for

mining frequent patterns using sliding window model. In

2009, Tanbeer et al [12] proposed an algorithm CPS-tree,

a prefix based data structure is used to maintain the recent

and exact information. Insertion and Restructuring phases

are repeatedly executed while data stream processing. In

2009, Li et al. [13] proposed the efficient sliding window

techniques called MFI-TransSW and MFI-TimeSW for

frequent pattern mining over data streams. In 2010,

Calders et al. [14] proposed an approximate algorithm for

mining top-k frequent items with max-frequency. In 2011,

Binesh Nair et al. [15] proposed an algorithm called

CFIM-P, to mine the closed frequent patterns over static

data with the elimination of null transactions.

III. PRELIMINARIES AND DEFINITIONS

 Let S be a stream of transactions and I= {i1, i2,…, im}

be the set of items. For an itemset Y, which is a subset of

I, a transaction T in S which contains an itemset Y if Y ⊆

T. The Support of Y is defined as the fraction of received

transactions that contains the itemset Y. If the support (Y)

is greater than or equal to the user given minimum support

threshold value, then the item is said to be frequent.

Definition 1: (Landmark Window Model)

Landmark window model is a data processing model in

data stream which maintains the history information from

the landmark starting point (tsp) to the current point (tcp).

If transaction tm is valid,

tsp ≤tm ≤tcp

Definition 2: (Sliding Window Model)

Sliding Window Model is one of the data processing

model in data streams which process and maintains only

the recent transactional data,

tn-|w|+1 ≤tm ≤ti

Where tn-|w|+1 and ti are the window’s identifier and i
th

received transaction.

Problem Statement: Given the data stream s, size of

window and minimum support threshold, the problem is

to find the all frequent itemsets using Landmark and

Sliding Window model by eliminating the null

transactions.

IV. PROPOSED METHOD

The method proposed here is based on Eclat algorithm

which is used for mining all frequent itemsets operating

on the vertical layout of database [6]. A new algorithm

has been proposed with elimination of null transactions

for mining all frequent patterns over data streams using

landmark window and sliding window models. The

modules identified are Elimination of Null Transactions,

Window Initialization, Pane Insertion and Frequent

Patterns Maintenance. First three modules are common in

both of these models. Maintenance of frequent patterns is

done differently by each of the models.

Elimination of Null Transactions: Null Transaction is a

transaction which contains a single item in a dataset. This

transaction does not give any information for association.

An attempt has been made to eliminate the null

transactions [15] in order to reduce the processing time for

finding k-frequent itemsets. It saves lot of memory when

the patterns are maintained in the tree.

Window Initialization: The window initialization phase is

activated while the number of transactions generated so

far in a transaction data stream is equal to the window size

(ws).

Pane Insertion: Adding a single transaction or a batch of

transaction to an existing window is called as pane

insertion. Due to efficiency issues, addition or deletion of

transactions from window is in batch wise. The number of

transactions are added to a window is equal to the pane

size (ps).

These three phases are common for mining frequent

patterns with elimination of null transactions over data

streams using landmark (SNT-FPMoDSLW) and sliding

window (SNT-FPMoDSSW) models but differ in frequent

patterns maintenance phase. This phase is briefly

explained along with algorithm for different models in

following subsections.

A. SNT-FPMoDSLW – Proposed Method of Landmark

window model:

In this section, the concept of our proposed method

SNT-FPMoDSLW (Screening of Null Transactions-

Frequent Pattern Mining over Data Streams using

Landmark Window Model) is briefly explained. This

model is used for users who are interested in historical

data from a landmark time. The modules of the algorithm

are as follows:

1. Elimination of Null Transactions

2. Window Initialization

3. Pane Insertion

4. Maintenance of Frequent Pattern Tree for

Landmark Window (FPT-LW).

Window is initialized after eliminating the null

transactions and frequent patterns are mined using Eclat

algorithm [1]. This algorithm is operating on the vertical

Mining Frequent Patterns with Screening of Null Transactions using different models

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1868

layout of database [16, 19]. This layout contains the

tidlists of items in the database. The support of all single

items is directly extracted from the vertical layout of

dataset in a single scan. If the support value is greater than

or equal to the user defined minimum support threshold

then those single items are considered as frequent items.

Then, we do the intersection operation over tidlists of

frequent single items to obtain the support value for

candidate 2-itemsets. The process is repeated until all the

frequent patterns are extracted from the initial window.

When a pane or batch of transactions is inserted to the

window, the frequent patterns are extracted in the same

way from pane and the results are updated.

i) Maintenance of Frequent Pattern Tree for Landmark

Window (FPT-LW)

 A new data structure namely FPT-LW has been

proposed to maintain the frequent patterns during data

stream processing. The extracted frequent patterns from

the initial window are inserted into FPT-LW tree. After

every pane insertion, frequent patterns are updated to this

tree.

Procedure for FPT-LW Updating

Input: FPT-LW tree structure (Window)

Output: Updated FPT-LW tree

 1. Search for node of item in FPT-LW tree

 2. if node does not exists then

 Create a node of item in that tree

 else

 Update the tid’s of item <p.tid’s> in

 corresponding node

 //p.tid’s= Item tid’s after pane insertion

 end if

Fig. 1 Procedure for FPT-LW Updating

 Fig. 1 shows the procedure for updating the FPT-LW

tree. FPT-LW tree contains two attributes: {itemset (Y),

tid’s of itemset}. From this FPT-LW, it is possible to get

history of information about frequent patterns in a stream

of data.

The sample structure of FPT-LW tree is shown in Fig 2.

Fig. 2 FPT-LW Tree (Initial Window)

Fig. 3 FPT-LW Tree Updation

 Initially, the root node is null. The frequent patterns

corresponding to the initial window are stored in

upcoming levels with their tidsets. Fig. 3 shows the

updated FPT-LW tree after the insertion of pane into the

initial window. Due to pane insertion, some frequent

patterns may newly emerge and some frequent patterns in

the initial window may become infrequent or they

continue to be frequent as such. They are shown in Fig 3.

in different colors.

 The algorithm SNT-FPMoDSLW is presented in Fig.

4. In this algorithm, ws, ps and σ are the parameters given

by the user. In Step 1, the null transactions are dropped

from the experimental dataset. In Step 2, the window is

initialized using window size. Transactional window has

been filled with transactions upto this window size. The

set of frequent patterns are mined using Eclat algorithm

and are stored in Frequent Patterns Set (FPSet). These

frequent patterns are then inserted into the Frequent

Pattern Tree-Landmark Window (FPT-LW). In Step 3, the

pane size is initialized. After a pane is inserted into the

initial window, the frequent patterns are mined

incrementally. The results are updated in FPT-LW tree.

This algorithm maintains the whole set of frequent

patterns from the landmark time.

Input: Data Stream (S), Window Size(ws), Pane Size

(ps),Minimum Support Threshold % (σ)

Output: a set of frequent patterns

Procedure:

Step 1: Scan the original dataset and drop the null

 transactions.

 for each transaction (T) in S do

 if (tid → single item(i))

 delete (T[tid,i]);

 end if

 end for

Step 2: Window Initalization (ws,σ)

Initialize FPT-LW = {empty}

for each transaction Ti in S do

insert transaction (Ti) in TW

 if (TWws=FULL) then

 FPSet = Eclat (TW, σ)

 insert (FPT-LW,FPSet)

 end if

end for

Step 3: Pane Insertion (ps, σ)

Initialize p=1;

while (p≤psize)

 insert transaction (Ti) in TW

 p++;

end while

for each transaction in TW not in ws do

if (TWps = FULL) then

 //Compute Support

 Update FPSet (TWps , σ)

 Update (FPT-LW, FPSet)

end if

end for

Fig. 4 SNT-FPMoDS LW Algorithm

B. SNT-FPMoDSSW - Proposed Method of Sliding Window

Model:

Mining Frequent Patterns with Screening of Null Transactions using different models

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1869

 In this section, the Screening of Null Transactions-

Frequent Pattern Mining over Data Streams using Sliding

Window (SNT-FPMoDSSW) algorithm is explained

briefly. Sliding window model finds the frequent patterns

over data streams by considering only the recent set of

transactions. When the window slides, the old invalid

transactions are deleted and new valid transactions are

inserted into the window. The frequent patterns are

updated in the tree because of this deletion. There are two

types of sliding window: i) Transaction-Sensitive Sliding

Window ii) Time-Sensitive Sliding Window. The mining

process used in this paper is based on transaction-sensitive

sliding window model which maintains the fixed size of

transactions in a window. The sliding window model is

appropriate for those users who are interested to know

only the recent information.

The modules of this algorithm are as follows:

1. Elimination of Null Transactions

2. Window Initialization

3. Pane Insertion

4. Maintenance of Frequent Pattern Tree for Sliding

Window (FPT-SW)

The concept of first three modules is same as that of

landmark window model except the frequent patterns

maintenance phase.

i) Maintenance of Frequent Pattern Tree for Sliding

Window (FPT-SW)

 A new data structure called FPT-SW is used to store

the frequent patterns mined using sliding window model.

Initially, the extracted frequent patterns from the initial

window are stored in FPT-SW tree. Then after every pane

insertion, window sliding phase is activated. During this

window sliding phase, old information is deleted from the

FPT-SW tree and new patterns are inserted into the tree.

In Fig. 5, the procedure for updating the frequent patterns

after pane insertion is given.

Fig. 5 Procedure for FPT-SW Updating

 Each node in a FPT-SW tree includes 2 fields: {itemset

(Y), a set of transactions that contains the itemset (Y)}.

The sample FPT-SW tree is given below:

Fig. 6 FPT-SW Tree (Initial Window)

 Fig. 6 stores the set of frequent patterns for initial

window. Each node contains an itemset with their

corresponding tidlists.

Fig. 7 FPT-SW Tree Updation

 In Fig. 7, the updated frequent patterns are shown after

a pane was inserted and processed. The old information in

FPT-SW tree is deleted because the sliding window model

considers only the recent transactions.

Input: Data Stream (S), Window Size(ws), Pane Size

(ps),Minimum Support Threshold % (σ)

Output: a set of frequent patterns

Procedure:

Step 1: Scan the original dataset and drop the null

transactions.

for each transaction (T) in S do

 if (tid → single item(i))

 delete (T[tid,i]);

 end if

end for

Step 2: Window Initalization (ws,σ)

Initialize FPT-SW = {}, CP= Last-Tid (TSW)

for each transaction Ti in S do

insert transaction (Ti) in TSW

 if (TSWws=FULL) then

 FPSet = Eclat(TSW, σ)

 insert (FPT-SW,FPSet)

 end if

end for

Step 3: Pane Insertion (ps, σ)

Initialize p=1;

while (p≤psize)

 insert transaction (Ti) in TSW

 p++;

end while

for each transaction in TSW not in ws do

if (TSWps = FULL) then

 //Compute Support

 Update FPSet (TSWps , σ)

 Stale = Cut (CP,TSW)

 DeleteEffect[FPT-SW]

Procedure for FPT-SW Updating

Input: FPT-SW tree structure (Window)

Output: Updated FPT-SW tree

1. Search for node of item in FPT-SW tree

2. if node does not exists then

Create a node of item in that tree

 else

Modify the tid’s of item <p.tid’s>

 in corresponding node

//p.tid’s= Item tid’s after pane

 insertion

 end if

Mining Frequent Patterns with Screening of Null Transactions using different models

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1870

 Update(FPT-SW, FPSet)

end if

end for

Fig. 8 SNT-FPMoDSSW Algorithm

 The SNT-FPMoDSSW algorithm is presented in Fig.8.

In Step1, all the null transactions from the dataset are

removed. In Step2, window size is initialized and

checkpoint is marked at the last transaction id (tid) of

initial window. The mining of frequent patterns was as

similar to the landmark window model. The frequent

patterns (FPSet) are inserted into FPT-SW tree.

 After inserting the batch of transactions, the set of

frequent patterns are updated in FPSet. The stale

transactions denoting previous concept upto the

checkpoint was deleted by removing corresponding

tidlists from window and effect of these transactions are

also deleted from the FPT-SW tree. Now the FPT-SW tree

stores only the updated / recent frequent patterns.

V. PERFORMANCE ANALYSIS

In this section, we first describe the experimental setup

and then illustrate the results of the proposed algorithms.

A. Experimental Setup

The algorithms were written in Java and compiled

using Netbeans IDE 7.3 version. The operating system

used to run these algorithms is windows7 and the

processor was Intel® Core i5-3230M, CPU@2.60GHz

with 4GB of RAM.

The experiments were done on two real life

benchmark datasets namely BMS-WebView-1 and BMS-

WebView-2. Table1. gives some features of above

mentioned datasets as follows:

TABLE I. DATASET CHARACTERISTICS

Name of

Dataset

No. of

Transactions

No.of

Unique

Items

Average

TL

BMS-

WebView-1

59,602

497

2.50

BMS-

WebView-2

77,512

3340

5.0

 BMS-WebView-1 and BMS-WebView-2 are the real

life dataset from a small dot com company named as

Gazelle.com. It contains several months of click stream

data from an ecommerce website. These datasets were

considered as stream data because clicking behaviors of

the customers was changed over a time. We executed

experiments on these datasets for mining frequent patterns

by setting up the following parameters: Window Size

(ws), Pane Size (ps), and Minimum Support (σ). The

parameter which is used for mining frequent pattern is σ

(minimum support). The pattern which is greater than or

equal to σ is considered as a frequent pattern.

In this paper, the performance of the proposed

algorithm SNT-FPMoDS is compared with FPMoDS on

landmark and sliding window models.

B. Experimental Results- Performance for SNT-

FPMoDSLW & SNT-FPMoDSSW

In this section, the performance evaluation of

proposed algorithms SNT-FPMoDSLW and SNT-

FPMoDSSW is presented. First, we compared the number

of frequent patterns produced by proposed and existing

algorithms for the landmark model (FPMoDSLW & SNT-

FPMoDSLW) under varying minimum support thresholds

using BMS WebView-1 and BMS WebView-2 datasets

and the results are shown in Fig. 9. In the second

experiment, we compared the running time of two

algorithms for landmark model and it is shown in Fig. 10.

 Fig. 11 shows the comparison of number of frequent

patterns and memory storage for the sliding window

model with different window size and pane size. It is

observed from the figure that screening of null

transactions gives better result than the existing algorithm.

We also compared the execution time of the proposed

algorithm with the existing algorithm in Fig. 12 for the

sliding window model.

 Depending upon the type of the application, the

landmark or sliding window model can be used to mine

frequent patterns by eliminating all null transactions

earlier.

mailto:CPU@2.60GHz

Mining Frequent Patterns with Screening of Null Transactions using different models

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1871

Mining Frequent Patterns with Screening of Null Transactions using different models

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1872

VI. CONCLUSION

 In this paper, we proposed new methods namely SNT-

FPMoDS (SNT-FPMoDSLW & SNT-FPMoDSSW) to

efficiently mine the frequent patterns from data streams

using landmark and sliding window models. The selection

of algorithm and the data processing model is based upon

the application requirements. Landmark model is best

suited for applications where users are interested in

mining patterns over a period of time whereas sliding

window model is used to analyze frequent patterns genera

REFERENCES

[1] M. Zaki, “Scalable Algorithms for Association Mining,” IEEE

Transactions on Knowledge and Data Engineering, no. 12, pp.

372- 390, 2000.

[2] G. S. Manku and R. Motwani, “Approximate Frequency Counts
over Data Streams,” in proceedings of the 28th international

conference on very large databases, Hong Kong, pp. 346-357,

2002.
[3] R. Agarwal, R. Srikant, “Fast Algorithms for mining association

rules in large databases,” in proceedings of the 20th international

conference on very large databases, pp. 487-499, 2004.
[4] H. F. Li, S. Y. Lee, M. K. Shan, “An efficient algorithm for

mining frequent itemsets over the entire history of data streams,”

in proceedings of first international workshop on knowledge
discovery in data streams, 2004.

[5] Chris Gianella, Jiawei Han, Jian Pei, Xifeng Yan, Philip S. Yu,

“Mining Frequent Patterns in Data Streams at Multiple Time
Granularities,” In: Proceedings of Data Mining: next generation

challenges and future directions, MIT/AAAI Press, pp. 191-212,

2004.
[6] Bart Geothals, “Frequent Set Mining,” Data Mining and

Knowledge Discovery Handbook, pp. 377-397, 2005.

[7] Nan Jiang and Le Gruenwald, “Researh Issues in Data Stream
Association Rule Mining,” ACM SIGMOD Record, vol. 35, no. 1,

pp. 14-19, 2006.

[8] C.K.-S. Leung, Q.I. Khan, “DSTree: a tree structure for the
mining of frequent sets from data streams,” in Proceedings of

ICDM, pp. 928-932, 2006.

[9] S. Zhang, J. Zhang, C. Zhang, “EDUA: an efficient algorithm for
dynamic database mining,” Information Sciences,vol. 177, pp.

2756-2767, 2007.

[10] J. Han, H. Cheng, D. Xin, X. Yan, “Frequent Pattern Mining:
Current status and future directions,” Data Mining and

Knowledge Discovery, vol. 15, no. 1, pp . 55-86, 2007.

[11] B. Mozafari, H. Thakkar, C. Zaniolo, “Verifying and mining
frequent patterns from large windows over data streams,” in

proceedings of international conference on ICDE, pp. 179-188,

2008.
[12] S. K. Tanbeer, C. F. Ahmed, B. S. Jeong, Y. K. Lee, “Sliding

window-based frequent pattern mining over data streams,”

Information Sciences, vol. 179, pp. 3843-3865, 2009.
[13] H. F. Li and S. Y. Lee, “Mining frequent itemsets over data

streams using efficient window sliding techniques,” Expert

Systems with Applications, vol. 36, pp. 1466-1477, 2009.
[14] H. T. Lam and T. Calders, “Mining top-k frequent items in a data

stream with flexible sliding windows,” in proceedings of the 16th

ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 283-292, 2010.

[15] Binesh Nair, Amiya Kumar Tripathy, “Accelerating Closed
Frequent Itemset Mining by Elimination of Null Transactions,”

Journal of Emerging Trends in Computing and Information

Sciences, vol. 2, no. 7, pp. 317-324, July 2011.

-ted from the recent information. However, the

presence of null transactions in a stream of transactions

degrades the performance of pattern discovery process.

The proposed work has attempted to resolve this issue

by eliminating those null transactions in a data stream.

The SNT-FPMoDS algorithm is experimentally

evaluated on real-life datasets with different window

size and minimum support thresholds on both models.

From the experimental results, it is observed that the

SNT-FPMoDS algorithm mines the complete set of

frequent patterns than the FPMoDS with less memory

usage and runtime for both landmark window and

sliding window models.

Mining Frequent Patterns with Screening of Null Transactions using different models

M.R. Thansekhar and N. Balaji (Eds.): ICIET’14 1873

[16] M. Deypir, M. H. Sadreddini,“EclatDS: An

efficient sliding window based frequent pattern

mining method for data streams,” Intelligent Data

Analysis, vol. 15, no. 4, pp. 571-587, 2011.

[17] Bart Goethals, Frequent Itemset Mining Dataset

Repository, Available: http://fimi.ua.ac.be/data/

[18] M. Deypir, M. H. Sadreddini, S. Hashemi, “Towards

a variable size sliding window model for frequent

itemset mining over data streams,” Computers &

Industrial Engineering, vol. 63, pp. 161-172, 2012.

[19] M. Deypir, M. H. Sadreddini, “A dynamic layout of

sliding of frequent itemset mining over data

streams,” The Journal of Systems and Software, vol. 85,

pp. 746-759, 2012.

http://fimi.ua.ac.be/data/

