
Volume 2, No. 4, April 2011

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2011, All Rights Reserved 148

MODEL BASED TESTING CONSIDERING STEPS, LEVELS, TOOLS &

STANDARDS OF SOFTWARE QUALITY

1
Sanjeev Dhawan,

2
Nirmal Kumar and

3
Shiva Saini

Department of Computer Engineering, UIET, Kurukshetra University, Kurukshetra.

nirmal.sirohi@gmail.com

Abstract - This paper gives an overview to the topic of model-based testing. The model based testing process is described, and the steps available at
each stage are considered. The different types of tool necessary to support the process are explained and example tools listed along with the standards
they support. The position for standards in model-based testing is examined, and the new skills required by tester are discussed. Throughout research

on model-based testing in the last 5-10 years has verified the probability of this approach. It has been shown that it can be cost-effective, and has
developed a variety of test generation strategies and model coverage criteria. Some commercial tools have started to emerge, from the USA (T-Vec,
Reactive Systems, I-logix), and also from Europe (Conformiq, Leirios Technologies, Telelogic), as well as a wide variety of academic and research
tools [BFS05]. The discussion in this paper is limited to functional testing, because model-based testing is less mature in other areas. Finally, means
of determining the appropriateness of projects for model-based testing are considered. In this paper following factors are analyzed: Model Based
Testing, Steps, Levels, Methods & tools that affect MBT.

INTRODUCTION
We all use models to make testing – otherwise we wouldn't

have a hint whether a test will be passes or fails – these

models allow us to know how the software should perform in

a given condition. However, most people’s models are very

personal and never see the light of day, only existing for a

brief time in the tester’s head. With model-based (or model-

driven) testing, the model of the system’s behaviour is

completed explicit and used as the basis for the whole

automation of the testing (see figure 1).

Figure 1: Model Driven Testing

The Model Based Testing Process

Model-based testing refers to the processes and techniques for
the automatic beginning of abstract test cases from abstract

formal models, the generation of existing tests from abstract

tests, and the manual or automated execution of the resulting

existing test cases. Therefore, the key points of model-based

testing are the modelling principles for test generation, the test

generation strategies and techniques, and the concretization of

conceptual tests into existing, executable tests. [1]

MODEL BASED TESTING STEPS

1. Design a Test Model. The model generally called the test

model represents the expected behaviour of the system under

test (SUT). Standard modelling languages such as UML is

used to formalize the control points and observation points of

the system, the expected dynamic behaviour of the system, the

business entities associated with the test, and some data for the

initial test configuration. Model elements such as transitions or
decisions are linked to the requirements, in order to ensure bi-

directional traceability between the requirements and the

model, and later to the generated test cases. Models must be

precise and complete enough to allow automated derivation of

tests from these models.

2. Select some Test Generation Criteria. There are usually

an infinite number of possible tests that could be generated

from a model, so the test analyst chooses some Test

Generation Criteria to select the highest priority tests, or to

ensure good coverage of the system behaviour. One common

kind of test generation criteria is based on structural model

coverage, using well known test design strategies such as
equivalence partitioning, cause-effect testing, pair-wise testing,

process cycle coverage, or boundary value analysis (see [1] for

more details on these strategies). Another useful kind of test

Sanjeev Dhawan

et al, Journal of Global Research in Computer Science, Volume 2 No 4 2011

© JGRCS 2011, All Rights Reserved 149

generation criteria ensures that the generated test cases cover

all the requirements, perhaps with more tests generated for

requirements that have a higher level of risk. In this way,

model-based testing can be used to implement a requirement
and risk-based testing approach. For example, for a non-

critical application, the test analyst may choose to generate

just one test for each of the nominal behaviours in the model

and each of the main error cases; but for one of the more

critical requirements, she/he could apply more demanding

coverage criteria such as all loop-free paths, to ensure that the

businesses processes associated with that part of the test model

are more thoroughly tested.

3. Generate the tests. This is a fully automated process that

generates the required number of (abstract) test cases from the

test model. Each generated abstract test case is typically a

sequence of high-level SUT actions, with input parameters and
expected output values for 2 each action. These generated test

sequences are similar to the high-level test sequences that

would be designed manually in action-word testing [2]. They

are easily understand by humans and are complete enough to

be directly executed on the SUT by a manual tester. The test

model allows computing the expected results and the input

parameters. Data table may be use to link some abstract value

from the model with some concrete test value. To construct

them executable using a test automation tool, a further

concretization phase automatically translates all abstract test

case into a concrete (executable) scripts, using a user-defined
mapping from abstract data values to concrete SUT values,

and a mapping from abstract operations into SUT GUI actions

or API calls. For example, if the test execution is via the GUI

of the SUT, then the action words are linked to the graphical

object map, using a test robot such as HP Quick Test

Professional, IBM Rational Functional Tester or the open-

source robot Selenium. If the test execution of the SUT is

API-based, then the action words need to be implemented on

this API. This can be a direct mapping or a more complex

automation layer. The expected results part of each abstract

test case is translated into oracle code that will check the SUT

outputs and decide on a test pass/fail verdict. The tests
generated from the test model may be structured into multiple

test suites, and published into standard test management tools

such as Quality Center, IBM Rational Quality Manager or the

open-source tool TestLink. Maintenance of the test repository

is done by updating the test model, then automatically

regenerating and republishing the test suites into the test

management tools;

4. Execute the Tests. The generated concrete tests are

typically executed either manually or within a standard

automated test execution environment, such as HP QuickTest

Professional or IBM Rational Functional Tester. Either way,
the result is that the tests are executed on the SUT, and we

find that some tests pass and some tests fail. The failing tests

indicate a discrepancy between the SUT and the expected

results designed in the test model, which then needs to be

investigated to decide whether the failure is caused by a bug in

the SUT, or by an error in the model and/or the requirements.

Experience shows that model-based testing is good at finding

SUT errors, but is also highly effective at exposing

requirements errors [even far before executing a single test

(thanks to the modelling phase). [4]

III. LEVELS, TOOLS AND STANDARDS FOR MODEL

BASED TESTING

LEVELS OF TESTING

During development and maintenance life cycles, test cases

can be applied to very small units, collection of units, or whole
systems. Model-based testing can support test activities at all

levels. At the lowest level, model-based testing can be used to

apply a single software module. By modeling the input

parameters of the module, a small but rich set of tests can be

developed rapidly. This approach can be used to assist

develo1pers during unit test activities. An intermediate-level

application of model-based testing is used to checking simple

behaviors; this is what we call a single step in an application.

Examples of a single step are performing an addition operation,

inserting a row in a table, sending a message, or filling out a

screen and submitting the contents. Generating tests for a
single step requires simply one input data model, and allows

computation of the expected outputs without creating

prediction that is more complex than the system under test. A

big challenge that offers comparably better benefits is using

model-based testing at the level of complex system behaviors

(sometimes known as flow testing). Step-oriented tests can be

used to generate comprehensive test suites. This type of

testing mostly represents customer usage of software. At our

work, we have selected sequences of steps based on

operational profiles [6] and used for the combinatorial test

generation approach to choose values tested in each step. An

alternate approach to flow testing uses models of a system’s
behavior instead of its inputs to generate tests. [5]

TOOLS & STANDARDS

The tools used to create the models used in model-based

testing are normally very similar to those uses by developers,
and could be identical in some cases. Where hybrid notations

are used then open source development tools can be

reasonably easy to modify, even though in the future it is

expected commercial development tool vendors will provide

the essential added functionality for testers. The tools for test

case generation are particular to the model notation used and

the test coverage criteria to be achieved. These tools are not

currently used in traditional software testing or development

and they are specific to model-based testing. Because of their

belief on the input model, they are generally closed to the

tools used for model generation. Test execution is performing
in the same way for model-based testing as like traditional

testing, so the same tools can generally be used. A list of

model-based testing tools and the modeling notation they

support is shown in below figure.

At present there are no standards that particularly support

model-based testing; however there are different standards that

can be used from other areas of software engineering. For

instance, the most probably candidate for the test model is the

new UML 2.0 standard from the (Object Management Group)

Sanjeev Dhawan

et al, Journal of Global Research in Computer Science, Volume 2 No 4 2011

© JGRCS 2011, All Rights Reserved 150

OMG [9]. Even though in its basic form this standard is most

likely not precise enough for test modelling, it should be

possible to improve this standard’s usefulness with a test

modelling profile. The output from the test generation tool is a
test suite (or a sequence of test cases). The two most obvious

candidates for the standard defining test cases are TTCN-3 [13]

and a XML-based standard, such as that is used in the

AGEDIS project [7]. If in the future model-based testing tools

converse using standard data formats, then users will be able

to select between combinations of tools for each of the three

main stages rather than being tied to a single tool and supplier,

with all the inherent economic and technological limitations

that this brings.

The algorithms used for test creation and their equivalent

coverage criteria are correlated by the same coverage
measurement. There are some test coverage measures defined

in BS 7925-2 [8], and even if these were originally defined to

support component testing, some of the measures, such as

state transition coverage, may be suitable for used in model-

based testing. They are appears to be lack of in-depth

knowledge in this area of the model-based testing approach.

Some basic coverage measures are usually understood, but the

more complex measures necessary for sensible coverage of

large state models appear to be either proprietary, or in any

case not well-understood by the testing community. For model

based testing to become accepted on a wider scale, the test
coverage achieved by the approach that should be both widely

understood and accepted. Thus allowing model-based testing

to be more likely compared with traditional testing and the

best way for this to happen is for these measures to be

consistent. At some point in the near future there will also

come a requirement for a consistent model-based testing

methodology, to provide a familiar understanding of the

approach.

Figure 2: Model Based Testing Tools and Notations

IV. BENEFITS OF MODEL BASED TESTING

Many studies has been shown that model based testing is

effective, mainly when used to test small applications,

embedded systems, user interfaces and state-rich systems with

practically complex data. Rosaria and Robinson interfaces,

Agrawal (2000) studied testing graphical user and Whittaker

(1993) embedded control software and Avritzer and Larson

(1993) phone systems. Usually the mainly attractive attribute

of model based testing is idea to be the automatic generation

of test cases, but that is not all. Model of software may help

refining uncertain and badly defined requirements [10]. By
eliminating model defects before the coding starts and

automating the test case creation the result is considerable cost

savings and higher quality code. Other benefits that are more

related to testing include e.g. the following, which were

presented in [10]:

 Comprehensive tests; if the model is an entire

abstraction of the software, it is likely to

automatically generate test cases which cover each

possible transition of the model by using graph

algorithms.

 Defect discovery; model based test automation

discovers defects more successfully than manual
methods. The article established this with a case

study in which manual method uncovered 33 defects

in a system, and model based method all of those and

in calculation 56 more. As it was shown in this

section the benefits of model based testing are huge if

modelling and all the related tasks are done

powerfully, but it also has some difficulties and

drawbacks.

DIFFICULTIES AND DRAW-BACKS OF MODEL

BASED TESTING

Almost every research on model based testing agrees on one

thing: deployment of model based testing into an organization

requires considerable efforts and investments. In [12], the

following three reasons for the desirable efforts and

investments are offered:

 Excessive amount of skills is necessary from the

testers. They need to be well-known with the model,

which means knowledge of dissimilar forms of state

machines, formal languages, and automata theory. In

accumulation, expertise in tools and scripts is

essential when test automation is going to be used.

 A large initial effort in terms of man-hours is

required. The type of the model has to be carefully

chosen, different parts of software must be separated

so that the modelling is easier because of the smaller

areas and the actual model has to be built.

 Models themselves have also several drawbacks.
The main one of those is the explosion of state-space

required. Even a simple application can hold so many

states that the maintenance of the model becomes

complicated and tedious task.

 As can be shown from the list, model based approach

to software testing is not the perfect solution. The

positive side though is that all the points in the list

can be overcome with thorough planning of the

deployment of model based testing into an

organization.

BenderRBT

 T-VEC RAVE

 Telelogic TAU SDL Suite

 IRISA / Verimag TGV

 REACTIS

 IBM Gotcha - TCBeans

 Agedis Toolset

 Conformiq Test Generator

 Leirios Test Generator

 Motorola ptk

MS Spec Explorer

SDL

LOTOS

Simulink / Stateflow models

Gotcha Definition Language

UML State Diagrams (ext.)

B

UML Seq. Diag. & MSC 2000

Spec#

Requirements Table

Sanjeev Dhawan

et al, Journal of Global Research in Computer Science, Volume 2 No 4 2011

© JGRCS 2011, All Rights Reserved 151

SUITABLE APPLICATIONS

Before anybody goes to using model-based testing, they must

be sure that the approach is suitable for their circumstances.

The creation of test models is clearly a large up-front cost, but

this must be recouped by the lower maintenance costs when

the system is prepared. Certainly, if the system is estimated to

have low maintenance costs, then the test modelling costs

should not be recouped by the potential maintenance savings

of model-based testing until much later in the maintenance

phase. Low maintenance costs may be predicted, for example,

if the system is planned to have only a short operational life or
it is expected that there will be mainly few changes to the

system required by the users (and its environment). Obviously

the application must be appropriate for modelling in a

supported notation. As stated in advance, switching

applications have been found to be mainly suitable, as they are

well-suited to modelling as a state model and there is good

tool support for this [11]. The application should also be

considered significant enough to warrant the cost of model-

based testing. If high quality is not important to the customer

then model based testing will be unlikely to be cost effective.

The complexity of performing traditional testing of

simultaneous applications could also act as a driver towards

using model-based testing, where the mix of many test cases

and systematic test case generation provides good test

coverage of complex models.

CONCLUSION

Model-based testing is a new and evolving technique that

allows us to automatically generate software tests from

explicit descriptions of an application’s behaviour. Because

the tests are generated from a model of the application, It is
needed only update the model to generate new tests when the

application changes. This makes model-based tests far easier

to maintain, review and update than traditional automated

tests. Testers who are willing and able to create model-based

test programs can create flexible, useful tests for the cost of a

general-purpose test language tool. Good software testers

cannot avoid models. MBT has emerged as a useful and

efficient testing method for realizing adequate test coverage of

systems.Model-based testing has already been used effectively

on a number of projects and the number of applications for

which model-based testing will be appropriate will carry on to
grow. A number of factors will make this growth. Second,

more commercial quality tool support will become offered.

Model-based testing will not, however, be suitable for all

situations. There will still be projects where no explicit model

of necessities is available and testing needs to be finished

before the end of next week. There will also be situations

where the available testers are not professional software

engineers, but simply those re-assigned from other parts of the

organization that are currently free.

REFRENCES

[1] Marius Nita, David Notkin “White-Box Approaches

for Improved Testing and Analysis of Configurable

Software Systems” IEEE 2009.

[2] Goutam Kumar Saha “Understanding Software

Testing Concepts” ACM 2008.

[3] Practical Model-Based Testing: A Tools Approach,

Mark Utting and Bruno Legeard, ISBN 978-0-12-

372501-1, Morgan-Kaufmann 2007.

[4] Apfelbaum, Larry. “Model-Based Testing”,

Proceedings of Software Quality Week 1997.

[5] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C.
M. Lott, G. C. Patton B. M. Horowitz, “Model-Based

Testing in Practice”, ICSE '99 1.0s Angeles CA

Copyright ACM 1999 1-581 13-074-0/99/05.

[6] J. D. Musa, A. Iannino, and K. Okumoto. Software

Reliability: Measurement, Prediction, Application.

McGraw-Hill, 1987.

[7] Crichton et al, Using UML for Automatic Test

Generation, 16th IEEE International Conference on

Automated Software Engineering (ASE 2001), San

Diego, USA, IEEE Computer Society, Nov 2001.

[8] BS 7925-2-1998, Software Component Testing.

[9] UML 2.0. See http://www.uml.org/.

[10] Blackburn, M., Busser, R. & Nauman, A. Why

Model-Based Test Automation is Different and What

You Should Know to Get Started. International

Conference on Practical Software Quality and

Testing, Washington, USA, 2004.

[11] Safford, E. Test Automation Framework, State-based

and Signal Flow Examples. Twelfth Annual Software

Technology Conference, Salt Lake City, USA, 2000.

[12] El-Far, I. K. & Whittaker, J. A. Model-based

Software Testing. In: Marciniak, J. (ed.),

Encyclopedia on Software Engineering, Volume 1.
New York, USA: John Wiley & Sons Inc, 2001. pp.

825-837. ISBN 0- 471-21008-0.

[13] TTCN-3.See http://www.etsi.org/ptcc/ptccttcn3.htm.

http://www.cs.waikato.ac.nz/~marku/mbt
http://en.wikipedia.org/wiki/Special:BookSources/9780123725011
http://en.wikipedia.org/wiki/Special:BookSources/9780123725011
http://www.uml.org/

