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ABSTRACT:A graph G(V, E) is said to have a vertex prime labeling if its edges can be labeled with distinct integers 

from 1, 2, 3, . . . ,  E such that for each vertex of degree at least 2, the greatest common divisor of the labels on 

its incident edges is 1.  A graph that admits a vertex prime labeling is called a vertex prime graph.   

In this paper, we prove that mK3,3 and mK4,4 are vertex prime graphs, where m is any positive integer. 
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I.INTRODUCTION 

 
 Let G(V, E) be a graph.  For notations and terminology, we follow [1].  G is called a vertex prime graph if 

there is a bijection  f :  E 1, 2, 3, . . . ,  E  such that for any vertex v,  
  

gcd f(uv)  = 1
uv E

.  The bijection f is 

called a vertex prime labeling of G. 

For example, vertex prime labelings of some known graphs are illustrated in Figure 1. 

 

  

 

 

 

  

 

 

 

 

Figure 1 

 
The concept of vertex prime graphs has been introduced by T. Deretsky, S.M. Lee and J. Mitchem [3] in 1991.  

They proved that the forests; any connected graph; C2k Cn; C2k C2n C2k+1; C2m C2n C2t Ck; and 5C2m are 

vertex prime.  They have further proved that a graph with exactly 2 components, one of which is not an odd cycle has a 

vertex prime labeling and a    2 – regular graph with atleast two odd cycles does not have a vertex prime labeling.  They 

have conjectured that a 2 – regular graph has a vertex prime labeling if and only if it does not have two odd cycles.  Let 

G = 

t

i = 1

C2ni and N = 

t

i = 1

 i
n .  In [2] I. Borosh, D. Hensley and A. Hobbs proved that there is a positive constant n0 

such that the conjecture of Deretsky et al., is true for the following cases:  

 i) G is the disjoint union of atmost seven cycles, or  

 ii) G is a union of cycles all of the same even length 2n if n ≤ 1,50,000 
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or if n ≥ 0
n , or 

 iii) ni ≥ (log N)
4logloglogN

 for all i = 1, 2, 3, . . . , t, or 

 iv) Each C2ni
is repeated atmostni times.      

In [4], SelvamAvadayappan and R. Sinthu proved that mK2,3 is vertex prime.   

 In this paper, we prove the vertex primeness of the union of m disjoint copies of the complete graphs K3,3 and 

K4,4. 

 

II. BACKGROND OR RELATED WORK 

 
 Mean graphs and Super mean graphs are the related works. 

 

III. PRESENTATION OF THE MAIN CONTRIBTION OF THE PAPER / SCOPE OF RESEARCH 

 
 We prove that mK3,3 and mK4,4 are vertex prime graphs through the definition of vertex prime graphs.We also 

work on the general case of this theorem. 

 

IV. EXPERIMENTAL RESULTS 

 
 We proved that mK3,3 and mK4,4 are vertex prime graphs. 

 

Theorem 1 For any positive integer m, the graph mK3,3 is a vertex prime graph. 

 

Proof 

 Let V(mK3,3) = {u1
1
, u2

1
, u3

1
; u1

2
, u2

2
, u3

2
; . . . ; u1

m
, u2

m
, u3

m
; v1

1
, v2

1
, v3

1
; v1

2
, v2

2
, v3

2
; . . . ; v1

m
, v2

m
, v3

m
} 

and 

E(mK3,3) = {ui
r
vj

r
 : 1 ≤ i≤ 3, 1 ≤ j ≤ 3; 1 ≤ r ≤ m} 

Define    3, 3 : E mK   1, 2, 3, . . . mf , 9 as follows:  

 

f(u1
r
vj

r
) = 9(r – 1) + j, 1 ≤ j ≤ 3, 1 ≤ r ≤ m;      

f(u2
r
vj

r
) = 9r – (j + 2), 1 ≤ j ≤ 3, 1 ≤ r ≤ m; 

f(u3
r
vj

r
) = 9r – (j – 1), 1 ≤ j ≤ 3, 1 ≤ r ≤m. 

Consider the vertex u1
r
.  Clearly,  

 

gcd((f(u1
r
vj

r
), 1 ≤ j ≤ 3, 1 ≤ r ≤ m)) 

 = gcd(9(r – 1) + j, 1 ≤ j ≤ 3, 1 ≤ r ≤ m) 

 = 1 

Similarly one can check for the remaining vertices u2
r
, u3

r
, v1

r
, v2

r
 and v3

r
. 

 

Thus f is a vertex prime labeling of mK3,3. 

Hence mK3,3 is a vertex prime graph. 
For example, a vertex prime labeling of 8K3,3 is shown in Figure 2. 

 

 

 

 

 

 

 

3 

7 
4 

8 

5 

2 9 

6 1 

12 

16 
13 

17 

14 

11 18 

15 10 

http://www.ijirset.com/


 

 

      

        ISSN: 2319-8753 

International Journal of Innovative Research in Science, 

Engineering and Technology 
(An ISO 3297: 2007 Certified Organization) 

Vol. 3, Issue 9, September 2014 
 

                              DOI: 10.15680/IJIRSET.2014.0309019 

Copyright to IJIRSET                                                                            www.ijirset.com                                                                 15928 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8K3,3 

 

 

Figure 2 

 
Theorem 2 For any positive integer m, the graph mK4,4 is a vertex prime graph. 

Proof 

 Let V(mK4,4) = {u1
1
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1
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2
; . 
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m
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m
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m
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m
} 

and 

E(mK4,4) = {ui
r
vj

r
 : 1 ≤ i ≤ 4, 1 ≤ j ≤ 4; 1 ≤ r ≤ m} 

Define    4, 4 : E mK   1, 2, 3, . . . , mf  16 as follows:  

f(u1
r
vj

r
) = 16(r – 1) + j, 1 ≤ j ≤ 4,1 ≤ r ≤ m;  

f(u2
r
vj

r
) = 16r – (j + 7), 1 ≤ j ≤ 4, 1 ≤ r ≤ m; 

f(u3
r
vj

r
) = 16r – (j + 3), 1 ≤ j ≤ 4, 1 ≤ r ≤ m;  

f(u4
r
vj

r
) = 16r – (j – 1), 1 ≤ j ≤ 4, 1 ≤ r ≤ m   

 

Consider the vertex u3
r
.  Clearly, 

gcd((f(u3
r
vj

r
), 1 ≤ j ≤ 4, 1 ≤ r ≤ m)) 

 = gcd(16r – (j + 3), 1 ≤ j ≤ 4, 1 ≤ r ≤ m) 

 = 1 

Similarly one can check for the remaining vertices u1
r
, u2

r
, u4

r
, v1

r
, v2

r
, v3

r
 and v4

r
. 

 

Thus f is a vertex prime labeling of mK4,4. 

Hence mK4,4 is a vertex prime graph. 

 

For example, a vertex prime labeling of 14K4,4 is shown in Figure 3. 
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Figure 3 

 

V.CONCLUSION 

 
 In this paper, we present Vertex prime labeling if its edges can be labeled with distinct integers.  Thus we 

prove that mK3,3 and mK4,4 are vertex prime graphs.  Some known graphs and unknown graphs are illustrated in a 

simple manner. 
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