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I. INTRODUCTION 

Generalized closed sets form a stronger tool in the characterization of bitopological spaces.  The study of bitopological 
spaces was initiated by Kelly [8] and thereafter a large number of papers have been done to generalize the topological 
concepts to bitopological setting.  Fukutake [5] introduced g - closed sets in bitopological spaces.  Abo Khadra and Nasef 
[1] discussed b - open sets in bitopological spaces.   Alswidi et al. [2] introduced a new notions on an ij - ߱ - closed sets in 
bitopological spaces.   
In this paper, a new class of sets in bitopological spaces called (i, j) - g*b߱ - closed sets is introduced.  A comparative study 
has been done with already existing closed sets and (i, j) - g*b߱ - closed sets.   

II. PRELIMINARIES 

A triple (X, ߬ଵ, ߬ଶ) where X is a non empty set and ߬ଵ and ߬ଶ are topologies on X is called a bitopological space.  
For a subset A of (X, ߬ଵ, ߬ଶ), the closure of A and the interior of A with respect to ߬௜ is denoted by i - cl(A) and i - int(A) 
respectively for i = 1, 2. The intersection of all ߬௜ - closed sets containing A is called i - cl(A).  The union of all ߬௜ - open 
sets contained in A is i - int(A). 

Definition 2.1 For i, j = 1, 2 and i ≠ j, a subset A of a bitopological space (X, ߬ଵ, ߬ଶ) is called  
(i) (i, j) - semi closed (Maheswari et al., 1977 - 78) if j - int(i - cl(A))  A.  
(ii) (i, j) -  - closed [7] if i - cl(j - int(i - cl(A)))  A. 
(iii) (i, j) - pre closed [7] if i - cl(j - int(A))  A. 
(iv) (i, j) - regular closed [4] if i - cl(j - int(A))  A. 
(v) (i, j) - b - closed [3] if (j - int(i - cl(A))) ∪ (i - cl(j - int(A)))  A. 
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The complements of the above mentioned sets are called (i, j) - semi open, (i, j) -  - open, (i, j) - pre open, (i, j) - regular 
open and (i, j) - b - open sets respectively.  

The intersection of all ௝߬  - semi closed (resp.  ௝߬  -  - closed,  ௝߬  - pre closed, ௝߬  - regular closed and ௝߬  - b - closed) subsets 
of (X, ߬) containing A is called the ௝߬  - semi closure (resp. ௝߬  -  - closure, ௝߬  - pre closure, ௝߬  - regular closure and ௝߬  - b - 
closure) of A and is denoted by ௝߬  - scl(A) (resp. ௝߬  - cl(A),  ௝߬ - pcl(A),  ௝߬  - rcl(A) and ௝߬  - bcl(A)). 

Definition 2.2 For i, j = 1, 2 and i ≠ j, a subset A of a bitopological space (X, ߬ଵ, ߬ଶ) is called 

(i) (i, j) - generalized closed (briefly, (i, j) - g - closed) [5] if ௝߬  - cl(A)  U whenever A  U and U is ߬௜ - 
open in X. 

(ii) (i, j) - regular generalized closed (briefly, (i, j) - rg - closed) [3] if ௝߬  - cl(A)  U whenever A  U and 
U is ߬௜ - regular open in X. 

(iii) (i, j) - weakly generalized closed (briefly, (i, j) - wg - closed) [6] if ௝߬  - cl(A)[߬௜  - int(A)]  U 
whene1ver A  U and U is ߬௜ - open in X. 

(iv) (i, j) - generalized star closed (briefly, (i, j) - g* - closed) [13] if ௝߬  - cl(A)  U whenever A  U and U 
is ߬௜ - g - open in X. 

(v) (i, j) -  generalized  - closed (briefly, (i, j) - g - closed) [9] if ௝߬  - cl(A)  U whenever A  U and U 
is ߬௜ -  - open in X. 

(vi) (i, j) -  - generalized closed (briefly, (i, j) - g - closed) [12] if ௝߬  - cl(A)  U whenever A  U and U 
is ߬௜ - open in X. 

(vii) (i, j) - generalized star pre closed (briefly, (i, j) - g*p - closed) [14] if ௝߬  - pcl(A)  U whenever A  U 
and U is ߬௜ - g - open in X. 

(viii) (i, j) - generalized star semi closed (briefly, (i, j) - g*s - closed) [12]  if ௝߬  - scl(A)  U whenever A  U 
and U is ߬௜ - gs - open in X. 

(ix) (i, j) - generalized # semi closed (briefly, (i, j) - g#s - closed) [15] if ௝߬  - scl(A)  U whenever A  U and 
U is ߬௜ - g - open in X. 

The complement of the above mentioned sets are called their respective open sets. 

III. (i, j) - g*b࣓ - CLOSED SETS 

 In this section, the concept of (i, j) - g*b߱ - closed sets in bitopological spaces is defined and some of their 
characterizations and properties are studied. 

Definition 3.1 A subset A of a bitopological space (X, ߬ଵ, ߬ଶ) is called (i, j) - generalized star b omega closed (briefly, (i, j) 
- g*b࣓ - closed) if ௝߬  - bcl(A)  U whenever A  U and U is ߬௜ - gs - open in (X, ߬ଵ, ߬ଶ), where i, j = 1, 2 and i ≠ j. 

The set of all (i, j) - g*b߱ - closed sets in (X, ߬ଵ, ߬ଶ) is denoted by G*b߱C(i, j).   

Remark 3.2 By setting ߬௜ = ௝߬  in definition 3.1, an (i, j) - g*b߱ - closed set is a g*b߱ - closed set [11]. 

Example 3.3 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {b}, {a, b}} and ߬ଶ = {φ, X, {a}, {a, b}}.  Then φ, X, 
{b}, {c}, {b, c} are (1, 2) - g*b߱ - closed. 
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Theorem 3.4 Every ௝߬  - closed (resp. ௝߬  - semi closed, ௝߬ closed, ௝߬ - ߙ -   - pre closed, ௝߬  - regular closed) set in (X, ߬ଵ, ߬ଶ) is 
(i, j) - g*b߱ - closed. 

Proof: Let A be ௝߬  - closed (resp. ௝߬  - semi closed, ௝߬ closed, ௝߬ - ߙ -   - pre closed, ௝߬  - regular closed) in (X, ߬ଵ, ߬ଶ) such that 
A  U, where U is ߬௜ - gs - open.  Since A is ௝߬  - closed (resp. ௝߬  - semi closed, ௝߬ closed, ௝߬ - ߙ -   - pre closed, ௝߬  - regular 
closed), ௝߬  - cl(A) (resp. ௝߬  - scl(A), ௝߬ cl(A), ௝߬ߙ -   - pcl(A), ௝߬  - rcl(A)) = A  U.  But ௝߬  - bcl(A)  ௝߬  - cl(A) (resp. ௝߬  - 
scl(A), ௝߬  - αcl(A), ௝߬  - pcl(A), ௝߬  - rcl(A)).  Therefore ௝߬  - bcl(A)  U.  Hence A is an (i, j) - g*b߱ - closed set in (X, ߬ଵ, 
߬ଶ). 

The converse of the above theorem is not true in general as can be seen from the following examples: 

Example 3.5 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {b}, {a, b}} and ߬ଶ = {φ, X, {a}, {a, b}}.  The subsets 
{b} is (1, 2) - g*b߱ - closed but not ߬ଶ - closed. 

Example 3.6 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a, b}} and ߬ଶ = {φ, X, {a}}.  The subsets {a, c} is (1, 2) - 
g*b߱ - closed but not ߬ଶ - semi closed. 

Example 3.7 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {a, b}} and ߬ଶ = {φ, X, {a}, {b}, {a, b}}.  The subsets 
{a}, {b} are (1, 2) - g*b߱ - closed but not ߬ଶ - ߙ - closed, not ߬ଶ - pre closed and not ߬ଶ - regular closed. 

Theorem 3.8 Every (i, j) - g*s - closed set in (X, ߬ଵ, ߬ଶ) is (i, j) - g*b߱ - closed. 

Proof: Let A  U and U be ߬௜ - gs - open in (X, ߬ଵ, ߬ଶ).  Since A is (i, j) - g*s - closed in (X, ߬ଵ, ߬ଶ), ௝߬  - scl(A)  U.  But 
௝߬  - bcl(A)  ௝߬  - scl(A)  U. Therefore A is (i, j) - g*b߱ - closed. 

The converse of the above theorem is not true in general as can be seen from the following example: 

Example 3.9 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}} and ߬ଶ = {φ, X, {a}, {b, c}}.  The subsets {b}, {c}, {a, 
b} and {a, c} are (1, 2) - g*b߱ - closed but not (1, 2) - g*s - closed. 

Remark 3.10 The following examples show that (i, j) - g*b߱ - closed set is independent from (i, j) - semi closed set, (i, j) - 
 - closed set and (i, j) - pre closed set. 

Example 3.11 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {b}, {a, b}} and ߬ଶ = {φ, X, {a}}.  The subset {a, c} is 
(1, 2) - semi closed, (1, 2) -  - closed and (1, 2) - pre closed but not (1, 2) - g*b߱ - closed.   

Example 3.12 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a, b}} and ߬ଶ = {φ, X, {a}}.  The subset {a, c} is (1, 2) - 
g*b߱ - closed but not (1, 2) - semi closed, not (1, 2) -  - closed and not (1, 2) - pre closed.  

Remark 3.13 The following examples show that (i, j) - g*b߱ - closed set is independent from (i, j) - regular closed set and 
(i, j) - g - closed set, (i, j) - wg - closed. 

Example 3.14 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {b}, {a, b}} and ߬ଶ = {φ, X, {a}, {a, b}}.  The subset 
{a, c} is (1, 2) - regular closed and (1, 2) - g - closed (1, 2) - wg - closed but not (1, 2) - g*b߱ - closed.   
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Example 3.15 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {b}, {a, b}} and ߬ଶ = {φ, X, {a}, {a, b}}. The subset 
{b} is (1, 2) - g*b߱ - closed but not (1, 2) - regular closed and not (1, 2) - g – closed, not (1, 2) - wg - closed. 

Remark 3.16 The following examples show that (i, j) - g*b߱ - closed set is independent from (i, j) - rg - closed set and (i, 
j) - g* - closed set. 

Example 3.17 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {b}, {a, b}} and ߬ଶ = {φ, X, {a}}.  The subset {a, c} is 
(1, 2) - rg - closed (1, 2) - g* - closed but not (1, 2) - g*b߱ - closed.   

Example 3.18 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {b}, {a, b}} and ߬ଶ = {φ, X, {a}}.  The subset {b} is 
(1, 2) - g*b߱ - closed but not (1, 2) - rg - closed, not (1, 2) - g* - closed. 

Remark 3.19 The following examples show that (i, j) - g*b߱ - closed set is independent from (i, j) - gα - closed set and (i, 
j) - g*p - closed set. 

Example 3.20 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {b}, {a, b}} and ߬ଶ = {φ, X, {a}}.  The subset {a, c} is 
(1, 2) - gα - closed and (1, 2) - g*p - closed but not (1, 2) - g*b߱ - closed. 

Example 3.21 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {a, b}} and ߬ଶ = {φ, X, {a}, {b}, {a, b}}.  The subsets 
{a}, {b} are (1, 2) - g*b߱ - closed but not (1, 2) - gα - closed and not (1, 2) - g*p - closed. 

Remark 3.22 The following examples show that the concepts (i, j) - αg - closed set and (i, j) - g*b߱ - closed set are 
independent. 

Example 3.23 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {b}, {a, b}} and ߬ଶ = {φ, X, {a}, {a, b}}.  The subset 
{a, c} is (1, 2) - αg - closed but not (1, 2) - g*b߱ - closed. 

Example 3.24 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {a, b}} and ߬ଶ = {φ, X, {a}, {b}, {a, b}}.  The subsets 
{a}, {b} are (1, 2) - g*b߱ - closed but not (1, 2) - αg - closed. 

Remark 3.25 The following examples show that the concepts (i, j) - g#s - closed set and (i, j) - g*b߱ - closed set are 
independent. 

Example 3.26 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {b}, {a, b}} and ߬ଶ = {φ, X, {a}, {a, b}}.  The subset 
{a, c} is (1, 2) - g#s - closed but not (1, 2) - g*b߱ - closed.   

Example 3.27 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}} and ߬ଶ = {φ, X, {a}, {b, c}}.  The subsets {b}, {c}, 
{a, b} and {a, c} are (1, 2) - g*b߱ - closed but not (1, 2) - g#s - closed.  
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The following diagram shows the relationships of (i, j) - g*b߱ - closed sets with other sets: 
 
      ௝߬ closed         ௝߬ - ߙ -   - closed   (i, j) - ߙ - closed      ௝߬  - 

semi closed                 (i, j) - semi closed   

        ௝߬  - pre closed       (i, j) - pre closed  

   ௝߬  - regular closed                   (i, j) - regular closed 

(i, j) - g*s - closed         (i, j) - g*b࣓ - closed            (i, j) - b - closed 

     (i, j) - g - closed            (i, j) - g* - closed 

          (i, j) - gߙ- closed                (i, j) - g*p - closed 

               (i, j) - ߙg - closed                (i, j) - g#s - closed 

       (i, j) - wg - closed        (i, j) - rg - closed 

where A             B represents A implies B and A              B represents A and B are independent. 

Remark 3.28 Union of two (i, j) - g*b߱ - closed sets need not be (i, j) - g*b߱ - closed as can be seen from the following 
example: 

Example 3.29 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {a, b}} and ߬ଶ = {φ, X, {a}, {b}, {a, b}}.  Let A = {a} 
and B = {b}.  Then A ∪ B = {a, b} is not (1, 2) - g*b߱ - closed but A = {a} and B = {b} are (1, 2) - g*b߱ - closed.  

Remark 3.30 Difference of two (i, j) - g*b߱ - closed sets need not be (i, j) - g*b߱ - closed set as can be seen from the 
following example: 

Example 3.31 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a, b}} and ߬ଶ = {φ, X, {a}}.  Let A = {a, c} and B = {c}.  
Then A and B are (1, 2) - g*b߱ - closed but A \ B = {a} is not (1, 2) - g*b߱ - closed. 

Theorem 3.32 If a subset A of a bitopological space (X, ߬ଵ, ߬ଶ) is (i, j) - g*b߱ - closed then ௝߬  - bcl(A) \ A contains no 
nonempty ߬௜ - gs - closed set. 

Proof: Let A be an (i, j) - g*b߱ - closed set and F be a ߬௜ - gs - closed set such that F  ௝߬  - bcl(A) \ A.  Therefore A  Fc 
and F  ௝߬  - bcl(A).  Since Fc  is ߬௜ - gs - open and A is (i, j) - g*b߱ - closed, ௝߬  - bcl(A)    Fc.  Thus F  [ ௝߬  - bcl(A)]c = X 
\ [ ௝߬  - bcl(A)].  Hence F   [ ௝߬  - bcl(A)] ∩ [X \ [ ௝߬  - bcl(A)]] = φ.  Therefore F = φ.  Hence ௝߬  - bcl(A) \ A contains no 
nonempty ߬௜ - gs - closed set. 

Theorem 3.33 Let A be an (i, j) - g*b߱ - closed set in (X, ߬ଵ, ߬ଶ).  Then A is ௝߬  - b - closed if and only if ௝߬  - bcl(A) \ A is 
߬௜ - gs - closed in (X, ߬ଵ, ߬ଶ). 

Proof: Suppose that A is (i, j) - g*b߱ - closed.  Let A be ௝߬  - b - closed.  Then ௝߬  - bcl(A) = A.  Therefore ௝߬  - bcl(A) \ A = 
φ is ߬௜ - gs - closed in (X, ߬ଵ, ߬ଶ). 
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Conversely, suppose that A is (i, j) - g*b߱ - closed and ௝߬  - bcl(A) \ A is ߬௜ - gs - closed. Since A is (i, j) - g*b߱ - closed, ௝߬  
- bcl(A) \ A  contains no nonempty ߬௜ - gs - closed set (by Theorem 3.32).  Since ௝߬  - bcl(A) \ A is ߬௜ - gs - closed, ௝߬  - 
bcl(A) \ A = φ.  Then ௝߬  - bcl(A) = A.  Hence A is ௝߬  - b - closed. 

Theorem 3.34 Let A and B be subsets of (X, ߬ଵ, ߬ଶ) such that A  B  ௝߬  - bcl(A).  If A is (i, j) - g*b߱ - closed then B is (i, 
j) - g*b߱ - closed.  

Proof: Let A and B be subsets such that A  B  ௝߬  - bcl(A).  Suppose that A is (i, j) - g*b߱ - closed.  Let B  U and U be 
߬௜ - gs - open in (X, ߬ଵ, ߬ଶ).  Then A  U. Since A is (i, j) - g*b߱ - closed, ௝߬  - bcl(A)  U.  Since B  ௝߬  - bcl(A), ௝߬  - 
bcl(B)  ௝߬  - bcl[ ௝߬  - bcl(A)] = ௝߬  - bcl(A)   U.  Therefore B is (i, j) - g*b߱ - closed. 

Remark 3.35 In general an (i, j) - g*b߱ - closed set need not be equal to an (j, i) - g*b߱ - closed set.  

Example 3.36 consider X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {a, b}} and ߬ଶ = {φ, X, {a}, {b}, {a, b}}.  Then 
the subsets {a} and {a, c} are (1, 2) - g*b߱ - closed but not (2, 1) - g*b߱ - closed. 

Theorem 3.37 If ߬ଵ  ߬ଶ in (X, ߬ଵ, ߬ଶ) then G*b߱C(2, 1)  G*b߱C(1, 2). 

Proof: Let A ∈ G*b߱C(2, 1).  Let U ∈ GSO(X, ߬ଵ) such that A  U.  Since GSO(X, ߬ଵ)  GSO(X, ߬ଶ), U ∈ GSO(X, ߬ଶ).  
Since A is (2, 1) - g*b߱ - closed, ߬ଵ - bcl(A)  U.  Since ߬ଵ  ߬ଶ, ߬ଶ - bcl(A)  ߬ଵ - bcl(A).  Thus ߬ଶ - bcl(A)  U.  Hence 
A is (1, 2) - g*b߱ - closed. That is, A ∈ G*b߱C(1, 2).   

The converse of the above theorem need not be true as seen from the following example:   

Example 3.38 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {b}, {a, b}} and ߬ଶ = {φ, X, {a}, {a, b}}.  Then 
G*b߱C(2, 1)  G*b߱C(1, 2) but ߬ଵ ⊈ ߬ଶ. 

IV. (i, j) - g*b࣓ - OPEN SETS 

 In this section, (i, j) - g*b߱ - open sets in bitopological spaces is introduced and their properties are studied. 

Definition 4.1 A set A of a bitopological space (X, ߬ଵ, ߬ଶ) is called (i, j) - generalized star b omega open (briefly, (i, j) - 
g*b࣓ - open) if its complement is (i, j) - g*b߱ - closed. 

The set of all (i, j) - g*b߱ - open sets in (X, ߬ଵ, ߬ଶ) is denoted by G*b߱O(i, j). 

Theorem 4.2 A subset A of a bitopological space (X, ߬ଵ, ߬ଶ) is (i, j) - g*b߱ - open if and only if F   ௝߬  - bint(A) whenever 
F   A and F is ߬௜ - gs - closed in (X, ߬ଵ, ߬ଶ). 

Proof: Suppose that A is (i, j) - g*b߱ - open. Let F   A and F be ߬௜ - gs - closed.  Then Ac   Fc and Fc is ߬௜ - gs - open.  
Since Ac is (i, j) - g*b߱ - closed, ௝߬  - bcl(Ac)   Fc.  Since ௝߬  - bcl(Ac) = [ ௝߬  - bint(A)]c, [ ௝߬  - bint(A)]c   Fc.  Hence F   ௝߬  
- bint(A). 
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Conversely, suppose that F   ௝߬  - bint(A) whenever F   A and F is ߬௜ - gs - closed in (X, ߬ଵ, ߬ଶ).  Let U be ߬௜ - gs - open 
in (X, ߬ଵ, ߬ଶ) and Ac   U.  Then Uc is ߬௜ - gs - closed and Uc   A.  Hence by assumption Uc    ௝߬  - bint(A).  That is ௝߬  - 
bcl(Ac)   U.  Therefore Ac is (i, j) - g*b߱ - closed.  Hence A is (i, j) - g*b߱ - open. 

Theorem 4.3 If a subset A is (i, j) - g*b߱ - closed in (X, ߬ଵ, ߬ଶ) then ௝߬  - bcl(A) \ A is (i, j) - g*b߱ - open. 

Proof: Suppose that A is (i, j) - g*b߱ - closed in (X, ߬ଵ, ߬ଶ). Let F   ௝߬  - bcl(A) \ A and F be ߬௜ - gs - closed. Since A is (i, 
j) - g*b߱ - closed, ௝߬  - bcl(A) \ A does not contain nonempty ߬௜ - gs - closed sets (by Theorem 3.32).  Hence F = φ.  Thus F 
  ௝߬  - bint[ ௝߬  - bcl(A) \ A].  Hence ௝߬  - bcl(A) \ A is (i, j) - g*b߱ - open. 

Theorem 4.4 If a set A is (i, j) - g*b߱ - open in (X, ߬ଵ, ߬ଶ) then G = X whenever G is ߬௜ - gs - open and ௝߬  - bint(A) ∪ Ac  
 G. 

Proof: Suppose that A is (i, j) - g*b߱ - open in (X, ߬ଵ, ߬ଶ), G is ߬௜ - gs - open and ௝߬  - bint(A) ∪ Ac  G.  Then Gc  { ௝߬  - 
bint(A) ∪ Ac}c = ௝߬  - bcl(Ac) \ Ac.  Since Ac is (i, j) - g*b߱ - closed, ௝߬  - bcl(Ac) \ Ac contains no nonempty ߬௜ - gs - closed 
set in (X, ߬ଵ, ߬ଶ) (by Theorem 3.32).  Therefore Gc = φ.  Hence G = X. 

Remark 4.5 The converse of the above theorem is not true in general as can be seen from the following example: 

Example 4.6 Let X = {a, b, c} with the topologies ߬ଵ = {φ, X, {a}, {a, b}} and ߬ଶ = {φ, X, {a}, {b}, {a, b}}.  Let A = {c} 
and G = X.  Then G is ߬ଵ - gs - open, ߬ଶ - bint(A) ∪ Ac = φ ∪ {a, b} = {a, b}  G, but A = {c} is not (1, 2) - g*b߱ - open. 

Theorem 4.7 Let (X, ߬ଵ, ߬ଶ) be a bitopological space.  If x ∈  X then singleton {x} is either ߬௜ - gs - closed or (i, j) - g*b߱ - 
open. 

Proof: Let x ∈ X and suppose that {x} is not ߬௜ - gs - closed.  Then X \ {x} is not ߬௜ - gs -open.  Consequently, X is the 
only ߬௜ - gs - open set containing the set X \ {x}.  Therefore X \ {x} is (i, j) - g*b߱ - closed.  Hence {x} is (i, j) - g*b߱ - 
open. 

V. CONCLUSION 

In this research, we introduce the concept of g*b߱ - continuous, closed maps in these spaces and present some results. 
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