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INTRODUCTION
Cadmium sulfide (CdS) is one of the most important II-VI inorganic semiconductors members of the metal chalcogenide 

family with a direct bandgap (2.42 eV) at room temperature. It exists as two different polymorphs, hexagonal (wurtzite) form, or 
cubic (zincblende) form [1]. Generally; the Stable structure of cadmium sulfide at room temperature is zinc-blende, namely the cubic 
metastable phase whereas hexagonal crystalline phase is the thermodynamically stable phase over 300°C.The majority of the 
inorganic cadmium sulfide semiconductors are good candidates for electron acceptors. There are several methods to obtain CdS 
nanoparticles like gas phase reaction, solvothermal method, chemical bath deposition, microwave-assisted solution precipitation, 
and much more. These methods required high temperature with the use of toxic and highly sensitive compounds for different phase 
structures because different phases show different lattice vibration as well as nonlinear optical coefficients. Phase transformation 
processes from cubic to hexagonal phase require high temperature or high pressure. Therefore, it is of great significance to using 
effective co-precipitation method at low cost, fast with well controlled size and shape of semiconductor nanostructures of the 
cadmium sulfide by exploring novel approaches related to optical studies at room temperatures with easy preparation technique 
are highly attractive for desired applications in future for general purpose [2-4]. Photoactive colloidal luminescent semiconductor 
nanocrystals referred to as “quantum dots” or “QDs” are promising for utilizing the high-efficiency photovoltaic devices at a low 
cost by adjustable band gap with unique size tuning, high extinction coefficient and good photostability for sensitized solar cells. 
CdS QDs are more attractive due to broader utilization of the solar spectrum in the visible region with strong optical absorption in 
the 400 to 550 nm wavelength range.

The increase in the band gap with the decrease in the size of the particles is the most identified aspect of quantum confinement 
in CdS semiconductors [5,6]. Due to increase in the band gap of the CdS nanoparticles, it is widely used in optoelectronics, photonics, 
photovoltaic and photocatalysis. QDs are used as a window material for heterojunction solar cells to avoid the recombination of 
photo-generated carriers which consequently improves the efficiency of the solar cells. In optoelectronics, cadmium sulfide QDs 
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are used for making photocells, light emitting diode (LED), lasers, nonlinear optics, heterogeneous photocatalysis, high-density 
magnetic information storage and address decoders. In photonics, CdS is employed to make nanocrystals, sensors, optical filters, 
and all optical switches. CdS are also used as a pigment in paints and in engineered plastic for good thermal stability. These 
properties are the result of high surface-to-volume ratio present in CdS nanoparticles.

Various methods have been developed to synthesize cadmium sulfide in nanophase with different morphologies 
and structures like nanocrystals, nanorods, nanowhiskers, nanowires, nanobelts, nanotubes etc. Large-scale synthesis of 
semiconductor nanoparticles such as solid powder is critically important not only for the study of their physical properties but also 
for their industrial applications in the areas of catalysis, photocatalysis, and microelectronics [7-10].

 Many fundamental properties of cadmium sulfide have been expressed as a function of size and shape, controlling these 
aspects of semiconductor nanocrystallites would provide opportunities for tailoring properties of materials and offer possibilities 
for observing interesting and useful physical phenomena. Development of synthetic strategies for CdS nanocrystals of various 
shapes is still very significant to the field of materials science. The influence of various reaction parameters and solvents on the 
morphology of CdS nanostructures have been studied extensively by various researchers [11].

In the present work, the effect of commercially obtained sample (S1) and lab prepared; samples S2 (ethanol), distilled water 
sample (S3) on the optical properties of Cadmium sulfide (CdS) has been studied.

EXPERIMENTAL DETAILS
 In this experiment, commercially available cadmium sulfide powder procured from CDH Laboratory Reagents (maximum 

limits of impurities – water-soluble matter: 2%, chloride: 0.02%, nitrate: 0.002%, iron: 0.03%) was used and named as sample 
S1. The other two samples of CdS were prepared using ethanol and distilled water as a solvent. 2.665 g cadmium acetate was 
dissolved in 50 ml ethanol in a volumetric flask to make a 0.2 M ethanolic solution. Similarly, 0.781 g sodium sulfide was dissolved 
in ethanol to make a 0.2 M ethanolic solution. Both the solutions were kept separately for 1 hour each at room temperature before 
mixing them. The solution so obtained was kept under constant magnetic stirring for 1 h at 40°C for obtaining homogeneity. 
Ammonium hydroxide was also added to maintain a pH value of 7 at this temperature. The pH value was confirmed using pH 
indicator strips. The resulting yellow precipitate was separated from the solution by filtration and washed many times with ethanol 
as well as distilled water respectively.

Finally, the precipitate was dried in hot air oven at 60°C for 4 h and the powder so obtained was named as sample S2. The 
Same process was followed for the precipitation of CdS powder with distilled water as a solvent. This time, a precipitate had to be 
dried at 100°C for 4 h. The higher temperature was required for this sample to obtain a proper dry condition. This powder was 
named as sample S3. Finally, all the three samples viz. S1 (commercially obtained), S2 (prepared in ethanol), and S3 (prepared 
in distilled water) were ground using mortar and pestle to obtain fine CdS powder for characterization.

CHARACTERIZATION OF CDS POWDER SAMPLES
X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), UV-visible absorption spectroscopy, Photoluminescence (PL) 

spectroscopy, and Fourier Transform Infrared (FTIR) spectroscopy carried out the characterization of the three different CdS 
powder samples. Crystal structures of the CdS samples were characterized by X-ray diffraction (XRD) using Regaku ultima-IV, 
employing CuKα radiation (wavelength 1.5404 Å) in the 2θ range from 10° to 70° with a scan speed of 2°/sec under the 
similar conditions. Surface morphology of the samples was observed by Scanning Electron Microscope using model LEO-430 
from Cambridge, England. The optical absorption spectra were recorded using JASCO V670 UV-VIS-NIR spectrophotometer in the 
spectral range 400 to 600 nm using a quartz cuvette with an optical path of 1 cm for samples S1, S2, and S3 at normal incidence. 
PL spectra of the samples were recorded with the help of LS55 Perkin Elmer Fluorescence spectrometer. FTIR spectra of the 
samples were recorded in the mid-infrared range at 4000–400 cm-1 using Bruker Alpha spectrometer. All the measurements were 
performed at room temperature.

RESULTS AND DISCUSSION
X-ray diffraction

 X-ray diffraction is a convenient method for determining the mean size of the crystallites in nanocrystalline bulk materials by 
the diffracted peaks of the sample. The XRD patterns of commercially obtained and the two synthesized CdS samples are shown 
in Figure 1. which shows structural peaks diffracted by the crystal of the samples S1, S2, and S3.XRD peaks of the sample S1 
are found at 26.46° (111), 43.82° (220) and 51.91° (311) which correspond to cubic phase [12] and the ones at 24.90° (100), 
28.22° (002) and 47.97° (103) correspond to the hexagonal phase as reported in given references [4,7,10]. Hence, CdS sample S1 
(commercially obtained) exhibits both the cubic and hexagonal phases. Peaks for sample S2 (prepared in ethanol) appearing at 
26.65°, 44.23°, and 52.020 correspond to (111), (220) and (311) planes of the cubic phase [13,14]. For the sample S3 (prepared 
in distilled water), the peaks appear at 26.55°, 30.29°, 43.79° and 52.00° which correspond to (111), (200), (220) and (311) 
planes of CdS revealing the cubic crystal structure [15,16].
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Figure 1. XRD Spectra of CdS Samples S1, S2, and S3.

The crystallite size D of the nanoparticles is calculated by Scherrer’s equation D=Kλ/βcosθ where λ is the wavelength of CuKα 
line, β is Full Width at Half Maximum (FWHM) of the peak or broadening of the diffraction peak and θ is the angle of diffraction [10]. 
The mean crystallite size of the samples S1, S2, and S3 are found to be 20.9, 3.5, and 4.9 nm respectively.

Scanning electron microscopy

In Scanning Electron Microscopy, the electrons interact with atoms in the sample, which produces various signals that can 
be detected. This gives important information regarding growth mechanism, shape, and size of the sample.

Figure 2. SEM images of CdS Samples S1 (a), S2, (b) and S3(c).

The SEM images of the CdS samples are given in Figure 2. The image of sample S1 (Figure 2a) shows spongy nature of the 
surface. For sample S2 (Figure 2b), the surface nature is again found to be spongy but the particles are somewhat clear. From the 
image of sample S3 (Figure 2c), it is observed that particles are much clear with their small clusters in 100 nm range.

OPTICAL STUDIES
UV-visible Spectroscopy

The UV-Vis absorption spectroscopy has been used to determine the size and optical properties of the quantum sized 
particles. When the dimensions of nanocrystalline particles approach the exciton Bohr radius, a blue shift in energy is observed 
due to the quantum confinement phenomena [13]. In quantum confinement effect both strong and weak confinements are possible 
when the particle size is less than effective Bohr radius (5.28 nm) the confinement is strong and it is weak when the Particle size 
is more than the Bohr radius.

The strong and weak confinement occurs due to the presence of small and large grains in the sample. In general, a 
nanocrystalline sample is a combination of small and large grains as the size of the particle decreases to the nanoscale the 
band gap of the semiconductor increases causing a blue shift in the UV-vis absorption spectra. If the absorption peaks of the 
prepared CdS samples appear blueshift (450-495 nm) compared with that of bulk CdS it can be easily understood that quantum 
confinement effect is present in the prepared CdS sample [14].
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Figure 3. Absorption Spectra with wavelength of CdS Samples S1, S2, and S3.

 Observed absorption spectra by UV-visible spectroscopy from the Figure 3; shows distinct spectra with a shift in wavelength, 
in absorption band for CdS samples are S1 (538 nm) S2 (482 nm) and S3 (516 nm) respectively. The corresponding bandgap for 
all the samples can be determined by using the equation Enp=1240/λmax is 2.30, 2.57, and 2.40 eV respectively. The spectrum of 
commercial CdS sample S1 exhibits a broad absorption band around 538 nm indicating the effective photoabsorption property 
in the visible region [15], spectra of sample S2 (prepared by ethanol) observed at 482 nm, indicates the narrow distribution of the 
CdS nanoparticles, it is seen that blue shift at 482 nm with respect to bulk CdS (513 nm,2.42 ev) is contributed by the quantum 
confinement effect [16] and absorption spectra of CdS sample S3 (prepared by distilled water) observed at 516 nm near about bulk 
CdS is of great interest for their practical applications such as Zero-dimensional quantum confined materials in optoelectronics 
and photonics [5]. Reduction in the value of measured band gap is mostly due to strongly depend on the growth condition and the 
reflection from defect centers in the different grown crystals of the CdS sample.

With the help of band gap value, the particle size can be calculated by Brus equation [17,18]. Since the Brus equation is used 
to describe the emission energy of the quantum dot semiconductor nanocrystals which gives a relation between the radius of the 
crystallite and the energy gap thus explains the quantum size effect. Brus et al explained the theory of the blue shift and proposed 
an effective mass approximation formula Enp=Eo+ (h2/8R2){1/m*e+1/m*h} where Enp is the band gap of nanoparticles, Eo is the 
bandgap of bulk CdS (2.42 eV), m*e is the effective mass of an electron (0.19 me), m*h is the effective mass of the hole (0.8 
me) and R is the particle radius [13]. Optical size by this method for Sample S1, S2, and S3 at 2.30, 2.57, and 2.40 eV bandgap 
is 4.47, 4.00, and 10.96 nm respectively. The absorption spectra show a systematic blue shift, which is also confirmed by the 
Fluorescence measurements [19].

Absorption coefficient

Absorption coefficient (α) is the property of a material which defines the amount of incident light photon absorbed by it 
which depends upon incident photon energy as well as the composition of the material. Variation of absorption coefficient (α) with 
photon energy can be explained in term of fundamental absorption, excitation absorption and valence band acceptor absorption 
[20]. For many glassy and amorphous non-metallic materials, the absorption edge can be divided into three distinct regions; (i) high 
absorption region (α ≥ 104 cm-1) where absorption is associated with inter-band transitions involving optical transitions between 
valence band and conduction band which determines the optical band gap, (ii) Spectral region with α in the range of 102 - 104 

cm-1 is called Urbach’s exponential tail region in which absorption depends exponentially on photon energy. In this region, most of 
the optical transitions take place between localized states and extended band states and provide information about the relative 
changes of the structural disorder induced by an additive [21], (iii) low absorption region (α<1 cm-1) implies weak absorption tail 
involving low energy absorption and originates from defects and impurities whose shape and magnitude depend on the purity, 
thermal history and preparation conditions [22,23].
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The absorption coefficient (α) has been evaluated by Beer-Lambert law (α=2.303A/t), Where A is optical absorption which 
depends on wavelength and density of point defects and (t) is light path length (10 mm) Figure 4 represents the absorption 
coefficient with incident photon energy for samples S1, S2, and S3. As the incident photon energy increases the absorption 
coefficient decreases continuously from visible region to near ultraviolet region. All the samples show low absorption coefficient 
due to defects and impurities which lead to carrier generation throughout the materials. Therefore Due to small absorption 
coefficient (α) of the samples S1, S2, S3, these may not be suitable for optical data storage.

Absorption constant (K)

Absorption constant/extinction coefficient indicates the amount of absorption loss when an electromagnetic wave (incident 
light) propagates through the material. The variation of absorption constant can be related to the variation of optical transmittance.
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Figure 5. Absorption constant with wavelength for CdS Samples S1, S2, and S3.

Figure 5 represents the Absorption constant with increasing wavelength for samples S1, S2, and S3.As the wavelength 
increases the absorption constant of all the sample increases up to the visible region.Hence the maximum amount of light loss 
through the sample in the visible region. The absorption constant has been evaluated using formula K=λα/4π [24].

Photoluminescence spectra

 PL spectra provide the transition energies which can be used to determine electronic energy levels. Figure 6 shows the 
intensity of PL spectra with increasing wavelength of sample S1, S2, S3 at 390 nm excitation wavelength. Emission peaks have 
been detected at yellow band emissions at 580 nm, 584 nm and 583 nm for the samples S1, S2, and S3 respectively with highest 
luminous intensity for S2, S3.
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Figure 6. PL Spectra of CdS Samples S1, S2, and S3.

The green band emission observed at 526 nm for sample S2 is due to the electronic transition from conduction band to an 
acceptor level which is created due to the presence of interstitial sulfur ions [25]. Thus, it is seen that CdS exhibits effective photo-
emission property in the visible region which shows that Lab prepared sample S2 and S3 has a minimum amount of defects in 
the material surface resulting increasing the PL intensity. Whereas in Sample S1 the luminous intensity decreases at lower energy 
are due to incomplete absorption [26].

Fourier transform infrared spectra

FTIR spectra of all three CdS samples, obtained in the mid-infrared region 4000-400 cm-1, are shown in Figure 7. Each band 
in an infrared spectrum is assigned to a particular deformation of the molecule, the movement of a group of atoms or bending or 
stretching of a particular bond.



e-ISSN: 2321-6212 
p-ISSN: 2347-2278

RRJOMS | Volume 5 | Issue 2 | April, 2017

Research & Reviews: Journal of Material SciencesResearch & Reviews: Journal of Material Sciences
DOI: 10.4172/2321-6212.1000167

33

1.0

0.9

0.8

0.7

0.6

0.5
600        1200     1800      2400     3000        3600

Wavenumber (cm)
Tr

an
sm

itt
an

ce
 (%

)

S1

S2
S3

23
50

36
18

37
40

38
47

15
22

10
17

14
20

15
32 16

98

67
4

61
0

Figure 7. FTIR Spectra of CdS samples S1, S2, and S3.

The peaks observed corresponding to 1420 cm-1 (for samples S2 and S3), 1522 cm-1 (for sample S1) and 1532 cm-1 (for 
samples S2 and S3) confirm the C=O stretching of methyl group whereas the ones observed at 3618, 3740, 3847 cm-1 for all the 
three samples correspond to O-H stretching [27-29]. The peaks observed at 530 (for S2), 533 (for S1), 556 (for S2), 610 (for S2, 
S3), and 674 cm-1 (for S2, S3) represent fingerprint region of bending vibrations. Hence, peaks corresponding to 610 cm-1 of the 
samples S2 and S3 are attributed to Cd-S stretching mode of vibrations as reported by other references [19,27,29] which, besides 
XRD, confirm the formation of CdS.

CONCLUSION
CdS nanoparticles are synthesized by co-precipitation method. XRD pattern of the CdS samples S1 exhibits hexagonal and 

cubic phases while those of samples S2 and S3 show only cubic phase with average crystal size 20.9, 3.5 and 4.9 nm respectively 
with increasing reactivity, scattering, and surface area. From the SEM images, it is noticed that the surface morphologies are in 
the form of assemblies of nanoparticles. Optical size of the CdS nanoparticles by Brus equation for the samples S1, S2 and S3 are 
found to be 4.47, 4.00 and 10.96 nm respectively and sample S1, S2 shows a systematic blue shift which confirm the quantum 
confinement of the particle . The maximum absorption coefficient of all the sample observed in the visible region and continuously 
decreases in near ultraviolet region as photon energy increases. As the wavelength increases, absorption loss through the sample 
increases with decreasing transmittance in the visible region. In PL spectra yellow band observed in all three samples whereas 
green band observed only by sample S2.FTIR spectra, besides XRD, confirm the formation of CdS. Hence From above results, all 
three samples are good for optoelectronics and other application but the main focus on obtained Cadmium sulfide sample S3 
(prepared in normal distilled water) gives an almost same result for optical and other characterization techniques in compare to 
S1, S2. It may be useful for many optoelectronic applications including solar cells, photodiodes, light emitting diodes etc. in future 
for general as well as scientific disciplines by easy technique and at low cost without any additional requirement.
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