
Volume 2, No. 8, August 2011

Journal of Global Research in Computer Science

RESEARCH PAPER

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 10

OVERVIEW OF GRAPH PARTITIONING WITH NATURAL HEURISTICS CUTS

Dilpreet Kaur
1
, Balwinder Singh

2

1, 2 Sri Sukhmani Engg. And Technology, Yadwindera Engg. College

dilpreet410@gmail.com

Abstract— This paper will present a short overview of several approaches to solve the k-way graph partitioning problem. In short this problem considers the

partitioning of a graph in k partitions, in such a way that one minimizes the cut value. The cut value represents the number of edges crossing this partitions.The

technique for simultaneous segmentation and classification of image partitions using graph cuts. By combining existing image segmentation a pproaches with

simple learning techniques. We manage to include prior knowledge into this visual grouping process.

Keywords - graph partitioning; road networks; minimum cuts; maximum flows; algorithms, image segmentation.

INTRODUCTION

The graph partitioning problem consists of dividing a graph

into equal sections, such that the cut separating these

sections has the lowest cost of all possible partitions. The

general graph partitioning problem is the k-way graph

portioning: to create a partitioning of k equally sized

partitions having minimal cut cost. Applications of graph

partitioning are many, including VLSI circuit design,

logistics, data mining, parallel computing and coloring. In
this paper we shall consider the 2-way graph partitioning

problem, but also show how to extend results to problems

calling for more sections. Even in this relatively simple

setting, the problem is too large to solve by mere

enumeration of partitions, as the number of partitions is

exponential in the number of nodes in the graph. Therefore

many heuristics have been devised to solve the graph

partitioning problem within a reasonable amount of time. A

heuristic may yield a good solution quickly. As exhaustive

methods will take very long to find a solution, speed is an

important metric for comparing different heuristics.

However, no heuristic may guarantee the result will be

optimal: the solution method can get stuck in local optimum.

This paper will therefore discuss a new algorithm for finding

solutions to the graph partitioning problem. The main

question we will address in this paper, is how well and to

what extend several local search heuristics perform against

each other. These approaches include: Genetic Algorithm

(GA), Kernighan-Lin (KL), GA+KL, Our gym-class

heuristic (GC) and GC+KL. To compare these five

approaches, the main criteria will be the time complexity,

but mainly empirical time performance, and the minimum
cut value found. We will take the Kernighan-Lin heuristic as

a benchmark, as it's good performance has been established

for already a few decades . We will show, by fitting each of

the algorithms into the local search template of Aarts,

Lenstra and Vaessens [1], Genetic Algorithms belong to the

class of local search algorithms.

THEORY OF GRAPH CUTS

A graph cut is the process of partitioning a directed or

undirected graph into disjoint sets. The concept of

optimality of such cuts is usually introduced by associating

energy to each cut. Problems of this kind have been well
studied within the field of graph theory but can for graphs

with more than only a few nodes be notoriously difficult.

Nevertheless, ever since it became apparent that many low-

level vision problems can be posed as finding energy

minimizing cuts in graphs these techniques have received a

lot of attention in the computer vision community. Graph

cut methods have been successfully applied to stereo, image

restoration, and texture synthesis and image segmentation.

Below we give a brief overview of graph cuts for image

segmentation as well as an introduction to some basic

definitions.

Min-cut/Max-flow cuts:

Given a graph G = {V, E, W} , where V denotes its nodes, E

its edges and W the affinity matrix, which associates a

weight to each edge in E. A cut on a graph is a partition of V

into two subsets A and B. Perhaps the simplest and best

known graph cut method is the min-cut formulation. The

min-cut of a graph is the cut that partitions G into disjoints

segments such that the sum of the weights associated with

edges between the different segments is minimized.

However, as this is an NP-hard combinatorial optimization

problem, the task of finding the solution can be a formidable
one. In order to overcome this one can relax (1) into a semi-

definite program, resulting in a convex problem for which

efficient solvers exist. However, the task of finding the

solution to the original problem from the relaxed one still

remains an open issue. Another commonly used approach is

based on a slight reformulation of the original min-cut

problem. By adding the requirement that two predefined

nodes, denoted terminal nodes or source and sink nodes, in

G must be in separate sets, the complexity of the problem is

significantly reduced. Finding the min-cut separating the

source and the sink, the s-t cut, can be achieved in
polynomial time. If one views the weights associated to each

node as a flow capacity it can be shown that the maximal

amount of a flow from source to sink is equal to the capacity

of a minimal cut. Therefore the min-cut problem is also

known as the max-flow problem.

The Image Seen as a Graph:

The general approach to constructing an undirected graph

from an image is shown in fig 1

Dilpreet Kaur et al, Journal of Global Research in Computer Science, 2 (8), September 2011, 10-12

© JGRCS 2010, All Rights Reserved 11

Figure 1:

Graph representing a 3-by-3 image. Basically each pixel in

the image is viewed as a node in a graph, edges are formed

between nodes with weights corresponding to how alike two

pixels are, given some measure of similarity, as well as the

distance between them. In attempt to reduce the number of

edges in the graph only pixels within a smaller,

predetermined neighborhood N of each other are considered.

The two terminal nodes, the source and the sink does not

correspond to any pixel in the image but instead are viewed
as representing the object and background respectively.

Edges are formed between the source and sink and all other

non-terminal nodes, where the corresponding weights are

determined using models for the object and background. The

min-cut of the resulting graph will then be the segmentation

of the image at hand. This segmentation should then be a

partition such that, flowing to the definition of image-pixel

resemblance, similar pixels close to each other will belong

to the same partition. In addition, as a result of the terminal

weights, pixels should also be segmented in such a manner

so they end up in the same partition as the terminal node
corresponding to the model (object or background) they are

most similar to an illustration of the segmentation process

can be seen in figure 2.

Figure 2: Example segmentation of a very simple 3-by-3 image. Edge

thickness corresponds to the associated edge weight. (Image courtesy of

Yuri Boykov)

EVALUATION AND COMPARISON OF IMAGE

SEGMENTATION

The research on evaluation of image segmentation can

provide crucial reference for those segmentation algorithms,

and so this research deserves wide attentions.

Understandably, the basic requirements are as follows:

universal use for evaluation algorithms, its simplification

and reliability, and whether referent images or manual

intervention is needed. Generally, two basic methods are

applied to objective evaluation of image segmentation:

analytical technique and experimental technique.

The Analytical Technique:

The analytical technique evaluates an image segmentation

algorithm by analyzing the principle of the algorithm, its
complexity, the prior knowledge needed, accurate detecting

probability, image resolution and so forth. The analytical

technique usually provides supplementary information and

supports for other methods of segmentation evaluation and it

is seldom used alone.

The Experimental Technique:

The experimental technique, which is widely used, interprets

and compares experiment results of image segmentation

algorithms to make an evaluation. This technique can be

subdivided into two distinct methods: superiority evaluation

method and deviation evaluation method.

The Superiority Evaluation Method: The superiority
evaluation method evaluates an image segmentation

algorithm by utilizing human visual trait. It judges the

quality of a segmentation algorithm by calculating certain

measures based on image segmentation result. The

commonly used measures are region uniformity, contrast of

regions, region shape and synthetically measure based on

ambiguity. The evaluation method based on region

uniformity characterizes segmentation result by quantizing

uniformity within regions after segmentation. Suppose Ri

stands for region i.

The Deviation Evaluation Method: In this method, firstly a
standard segmentation image is provided for comparison

criteria. Then the disparity between actual segmentation and

ideal one can be calculated to evaluate the image

segmentation algorithm. With a comparing test, the

deviation evaluation method is generally more effective than

the superiority evaluation method. Generally, this method

executes evaluation via factors as follows: the probability of

mistaken pixels, the position of mistaken pixels, the

consistency for the number of regions and so on. The

evaluation method based on the consistency for the number

of regions evaluates image segmentation in the manner like

this: suppose that N’ stands for the number of regions after
image segmentation and N is the number of regions

correctly partitioned. Reasonably, we can evaluate image

segmentation algorithms by analyzing the difference

between N’ and N.

PARTITIONING USING NATURAL CUT

HEURISTICS

PUNCH (Partitioning Using Natural Cut Heuristics), a

partitioning algorithm tailored to graphs containing natural

cuts, such as road networks. Given a parameter U (the

maximum size of any cell), PUNCH partitions the graph

into cells of size at most U while minimizing the number of

edges between cells.The algorithm runs in two phases:

filtering and assembly. The filtering phase aims to reduce

the size of the graph significantly while preserving its

overall structure. It keeps the edges that appear in natural
cuts, relatively sparse cuts close to denser areas, and

contracts other edges. The notion of natural cuts and

efficient algorithms to compute them are the main

Dilpreet Kaur et al, Journal of Global Research in Computer Science, 2 (8), September 2011, 10-12

© JGRCS 2010, All Rights Reserved 12

contributions of our work. Note that to find a natural cut it is

not enough to pick a random pair of vertices and run a

minimum cut computation between them: because the

average degree in road networks is small, this is likely to

yield a trivial cut. We do better by finding minimum cuts

between carefully chosen regions of the graph. Edges that
never contributed to a natural cut are contracted, potentially

reducing the graph size by orders of magnitude. Although it

is smaller, the filtered (contracted) graph preserves the

natural cuts of the input.

The second phase of our algorithm (assembly) is the one

that actually builds a partition. Since the filtered graph is

much smaller than the input, we can use more powerful (and

time-consuming) techniques in this phase. Another

important contribution of our work is a better local search

algorithm for the second phase. Note that the assembly

phase only tries to combine fragments (the contracted
regions). Unlike existing practitioners, we do not

disassemble individual fragments. Note that we focus on

finding partitions with small cells, but with no hard bound

on the number of cells thus created. As already mentioned,

previous work in this area has concentrated on finding

balanced partitions, in which the total number of cells is

bounded.

We show how one can use simple heuristics to transform the

solutions found by our algorithm into balanced ones. Our

comparison shows that PUNCH significantly improves the
best previous bounds for road networks. We are not aware

of any approach using min-cut computations to reduce the

graph size in the context of graph partitioning. However,

work on improving a partition is vast. For example, many of

the algorithms within the MGP framework use local search

based on vertex swapping, which improves the cut size by

moving vertices from one cell to another. The most

important ones are the FM and KL heuristics. The FM

heuristic runs in worst-case linear time by allowing each

vertex to be moved at most once. Local improvements based

on minimum cuts often yield better results than greedy

methods. For example, Andersen and Lang run several
minimum cut computations to improve the cut between two

neighboring cells. Another common approach to optimize a

cut between two cells is based on parametric minimum cut

computation. Besides vertex swapping and minimum cuts,

local search based on diffusion gives good results as well.

This approach has the nice side effect of optimizing the

shape of the cells, but it requires an embedding of the graph.

Most other methods, including ours, do not.

CONCLUSIONS

In this paper we have suggested a method for automatic

detection, segmentation and classification of textured

regions in color images. It describes how prior information

can be brought into a graph cut framework through the use

of terminal node weights and learning techniques. An

efficient implementation is also presented along with some
very promising results on an underwater image of a coral

reef as well as an ordinary holiday picture. PUNCH, a new

algorithm for graph partitioning that works particularly well

on road networks. The key feature of PUNCH is its graph

reduction routine: By identifying natural cuts and

contracting dense regions, it can reduce the input size by

orders of magnitude, while preserving the natural structure

of the graph. Because of this efficient reduction in size, we

can run more time-consuming routines to assemble a good

partition. As a result, we obtain the best known partitions for

road networks, improving previous bounds by more than
10% on average. Altogether, PUNCH is slower compared to

some previous graph partitioning algorithms, but it needs

only a few minutes to generate an excellent partition, which

is fast enough for most applications.

REFERENCES

[1]. M. R. Garey and D. S. Johnson, Computers and

Intractability. A Guide to the Theory of NP-Completeness.

W. H. Freeman and Company, 1979.

[2]. C. M. Fiduccia and R. M. Mattheyses, “A linear-time

heuristic for improving network partitions,” in Proceedings

of the 19th ACM/IEEE Conference on Design Automation,

1982, pp. 175–181

[3]. B. W. Kernighan and S. Lin, “An Efficient Heuristic

Procedure for Partitioning Graphs,” Bell System Technical

Journal, vol. 49, no. 2, pp. 291–307, February 1970.

[4]. R. Andersen and K. J. Lang, “An Algorithm for Improving

Graph Partitions,” in Proceedings of the 19th Annual

ACM–SIAM Symposium on Discrete Algorithms

(SODA’08), 2008, pp. 651–660

[5]. D. Pritchard and R. Thurimella, “Fast computation of small

cuts via cycle space sampling,” ACM Transaction on

Algorithms, 2010, to appear.

[6]. A. V. Goldberg and R. E. Tarjan, “A New Approach to the

Maximum Flow Problem,” J. Assoc. Comput. Mach., vol.

35, pp. 921–940, 1988.

[7]. C. C. Ribeiro, E. Uchoa, and R. F. Werneck, “A hybrid

GRASP with perturbations for the Steiner problem in

graphs,” INFORMS J. Computing, vol. 14, no. 3, pp. 228–

246, 2002.

[8]. Z. Wu and R. Leahy, “An Optimal Graph Theoretic

Approach to Data Clustering: Theory and Its Application to

Image Segmentation,” IEEE Trans. Pattern Analysis and

Machine Intelligence, vol. 15, no. 11, pp. 1101-1113, Nov.

1993.

[9]. I.J. Cox, S.B. Rao, and Y. Zhong, “Ratio Regions: A

Technique for Image Segmentation,” Proc. Int’l Conf.

Pattern Recognition, pp. 557- 564, Aug. 1996.

[10]. J. Shi and J. Malik, “Normalized Cuts and Image

Segmentation,” Proc. IEEE CS Conf. Computer Vision and

Pattern Recognition, pp. 731-737, 1997.

[11]. I.H. Jermyn and H. Ishikawa, “Globally Optimal Regions

and Boundaries,” Proc. Seventh Int’l Conf. Computer

Vision, pp. 904-910, 1999.

[12]. S. Sarkar and P. Soundararajan, “Supervised Learning of

Large Perceptual Organization: Graph Spectral Partitioning

and Learning Automata,” IEEE Trans. Pattern Analysis and

Machine Intelligence, vol. 22, no. 5, pp. 504-525, May

2000.

